Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ultra Wide Band Electromagnetic Shielding Through a Simple Single Layer Frequency Selective Surface

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Due to enormous increase of electromagnetic radiation emitted from proliferating radiating sources, precautionary approaches should be taken to minimize the resultant electromagnetic interference (EMI). Recognized as an effective countermeasure, electromagnetic shielding (EMS) structures are possible solutions for EMI cancellation. In this paper, a new filtering design is proposed with the aim of ultra-wide band EMS achievement and high signal attenuation. The proposed configuration, as a frequency selective surface, is composed of simple elements on both top and bottom layers of the substrate which exhibits 11.4 GHz ultra-wide stop band from 4.6 to 16 GHz. Moreover, in the aforementioned frequency bands, ultra-wide band shielding effectiveness with more than 20 dB attenuation is obtained as a more remarkable merit. The proposed design is a compact, simple, and suitable choice in shielding applications of ultra-wide frequency bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Munk, B. A. (2000). Frequency selective surface: Theory and design (1st ed.). New York, NY: Wiley-Interscience.

    Book  Google Scholar 

  2. Chakravarty, S., & Mittra, R. (2002). Application of the micro-genetic algorithm to the design of spatial filters with frequency-selective surfaces embedded in dielectric media. IEEE Transactions on Electromagnetic Compatibility, 44(2), 338–346.

    Article  Google Scholar 

  3. Zhou, H., Qu, Sh, Lin, B., Wang, J., Ma, H., Xu, Zh, et al. (2012). Filter-antenna consisting of conical FSS radome and monopole antenna. IEEE Transactions on Antennas and Propagation, 60(6), 3040–3045.

    Article  Google Scholar 

  4. Zahir Joozdani, M., Khalaj Amirhosseini, M., & Abdolali, A. (2016). Wideband radar cross-section reduction of patch array antenna with miniaturised hexagonal loop frequency selective surface. Electronics Letters, 52(9), 767–768.

    Article  Google Scholar 

  5. Li, Y., Zhang, K., Yang, L., & Du, L. (2016). Wide-band radar cross-section reduction for antenna using frequency selective absorber. Electronics Letters, 52(21), 1809–1811.

    Article  Google Scholar 

  6. Martinez-Lopez, L., Rodriguez-Cuevas, J., Martinez-Lopez, J. I., & Martynyuk, A. E. (2014). A multilayer circular polarizer based on bisected split-ring frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters, 13, 153–156.

    Article  Google Scholar 

  7. Zhu, X-C., Hong, W., Wu, K., Tang, H.-J., Hao, Zh-Ch., Chen, J.-X., et al. (2014). Design of a bandwidth-enhanced polarization rotating frequency selective surface. IEEE Transactions on Antennas and Propagation, 62(2), 940–944.

    Article  Google Scholar 

  8. Sakran, F., Neve-Oz, Y., Ron, A., Golosovsky, M., Davidov, D., & Frenkel, A. (2008). Absorbing frequency-selective-surface for the mm-wave range. IEEE Transactions on Antennas and Propagation, 56(8), 2649–2655.

    Article  Google Scholar 

  9. Edalati, A., & Denidni, T. A. (2013). Frequency selective surfaces for beam-switching applications”. IEEE Transactions on Antennas and Propagation, 61(1), 195–200.

    Article  Google Scholar 

  10. Liang, B., Sanz-Izquierdo, B., Parker, E. A., & Batchelor, J. C. (2015). Cylindrical slot FSS configuration for beam-switching applications. IEEE Transactions on Antennas and Propagation, 63(1), 166–173.

    Article  MathSciNet  Google Scholar 

  11. Bouslama, M., Traii, M., Denidni, T. A., & Gharsallah, A. (2016). Beam-switching antenna with a new reconfigurable frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 15, 1159–1162.

    Article  Google Scholar 

  12. Chiu, C-N, Chang, Y-C., Hsieh, H-C., & Chen, C. H. (2010). Suppression of spurious emission from a spiral inductor through the use of a frequency selective surface. IEEE Transactions on Electromagnetic Compatibility, 52(1), 56–63.

    Article  Google Scholar 

  13. Chiu, C-N, & Huang, K-C. (2011). Harmonization of a bandpass shielding enclosure and its internal antenna. IEEE Transactions on Electromagnetic Compatibility, 53(3), 853–858.

    Article  Google Scholar 

  14. Chiu, C-N, Kuo, C-H, & Lin, M-S. (2008). Bandpass shielding enclosure design using multipole-slot arrays for modern portable digital devices. IEEE Transactions on Electromagnetic Compatibility, 50(4), 895–904.

    Article  Google Scholar 

  15. Syed, I. S., Ranga, Y., Matekovits, L., Esselle, K. P., & Hay, S. G. (2014). A single-layer frequency-selective surface for ultrawideband electromagnetic shielding. IEEE Transactions on Electromagnetic Compatibility, 56(6), 1404–1411.

    Article  Google Scholar 

  16. Baisakhiya, S., Sivasamy, R., Kanagasabai, M., & Periaswamy, S. (2013). Novel compact UWB frequency selective surface for angular and polarization independent operation. Progress in electromagnetic research letters., 40, 71–79.

    Article  Google Scholar 

  17. Sen, G., Mahato, S., Mandal, T., Mondal, S., Majumdar, S., & Sarkar, P. P. (2012). Design of a wide band frequency selective surface (FSS) for multiband operation of reflector antenna. In 5th International conference on computers and devices for communication (CODEC) (pp. 1–3).

  18. Moharamzadeh, E., & Maleki Javan, A. (2013). Triple-band frequency-selective surfaces to enhance gain of X-band triangle slot antenna. IEEE Antennas and Wireless Propagation Letters, 12, 1145–1148.

    Article  Google Scholar 

  19. Guan, F., Xiao, H., Shi, M., & Wang, F. (2015). The novel frequency selective fabric and application research. Journal of Industrial Textile, 46 143–159.

    Article  Google Scholar 

  20. Ranga, Y., Matekovits, L., Weil, A. R., & Esselle, K. P. (2013). A low-profile dual-layer ultra-wideband frequency selective surface reflector. Microwave and Optical Technology Letters, 55(6), 1223–1227.

    Article  Google Scholar 

  21. Huang, H.-F., Zhang, Sh.-F., & Hu, Y. H. (2013). A novel frequency selective surface for ultra wideband antenna performance improvement. In Proceedings of the international symposium on antennas & propagation (ISAP) (pp. 965–968).

  22. Langley, R. J., & Parker, E. A. (1982). Equivalent circuit model for arrays of square loops. Electronics Letters, 18(7), 294–296.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Majidzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidzadeh, M., Ghobadi, C. & Nourinia, J. Ultra Wide Band Electromagnetic Shielding Through a Simple Single Layer Frequency Selective Surface. Wireless Pers Commun 95, 2769–2783 (2017). https://doi.org/10.1007/s11277-017-3960-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-3960-6

Keywords