Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Queen Honey Bee Migration (QHBM) Algorithm for Sink Repositioning in Wireless Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A novel sink repositioning scheme to prolong lifetime in wireless sensor network presents in this paper. The proposed method called Queen honey bee migration (QHBM) algorithm mimics the migration process of queen honey bee in nature. In short, the queen begins her journey to find the new location for hive which assisted by scout bees. Queen may visit several places until she found the place to settle down. Henceforth, sink represents Queen and CH nodes are assigned as scout bees. In QHBM, sink relocates itself from the initial position towards the selected pole of cardinal direction, for example: sink moves towards North pole. The sink movement is guided by CH nodes which have highest remaining energy. After arrived in the new position, sink recalculates parameters for next journey. Sink collects data whenever it arrived in the future position. CH nodes are rotated in each journey of a sink. Therefore, the proposed method can balance the energy consumption among nodes and prolong network lifetime. We conducted simulation and compared the proposed QHBM algorithm with static sink and existing sink repositioning schemes, namely random, rendezvous, and EASR. We clearly found that the network lifetime with all sink repositioning schemes is longer than static sink. The obtained results show that the network lifetime extension by QHBM sink repositioning is 1.2 times of lifetime with static sink. QHBM surpassed random, rendezvous and EASR in lifetime extension for about 1.16, 1.1, and 1.06 times, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang, C.-F., Shih, J.-D., Pan, B.-H., & Wu, T.-Y. (2014). A network lifetime enhancement method for sink relocation and its analysis in wireless sensor networks. IEEE Sensors Journal, 14(6), 1932–1943.

    Article  Google Scholar 

  2. Cayirpunar, O., Kadioglu-Urtis, E., & Tavli, B. (2015). Optimal base station mobility patterns for wireless sensor network lifetime maximization. IEEE Sensors Journal, 15(11), 6592–6603.

    Article  Google Scholar 

  3. Salarian, H., Chin, K.-W., & Naghdy, F. (2014). An energy efficient mobile sink path selection strategy for wireless sensor networks. IEEE Transaction Vehicular Technology, 63(5), 2407–2419.

    Article  Google Scholar 

  4. Zhang, Y.-Z., Zhang, X.-H., Fu, W.-Y., Wang, Z., & Liu, H.-L. (2014). HDRE: Coverage hole detection with residual energy in wireless sensor networks. Journal of Communications and Networks, 16(5), 493–501.

    Article  Google Scholar 

  5. Guo, P., Jiang, T., Zhang, Q., & Zhang, K. (2012). Sleep scheduling for critical event monitoring in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(2), 345–352.

    Article  Google Scholar 

  6. Karkvandi, H., Pecht, E., & Yadid-Pecht, O. (2011). Effective lifetime-aware routing in wireless sensor networks. IEEE Sensors Journal, 11(12), 3359–3367.

    Article  Google Scholar 

  7. Leu, J.-S., Chiang, T.-H., Yu, M.-C., & Su, K.-W. (2015). Energy efficient clustering scheme for prolonging the lifetime of wireless sensor network with isolated nodes. IEEE Communications Letters, 19(2), 259–262.

    Article  Google Scholar 

  8. Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.

    Article  MathSciNet  MATH  Google Scholar 

  9. Tyagi, S., & Kumar, N. (2013). A systematic review on clustering and routing techniques based upon LEACH protocol for wireless sensor networks. Journal of Network and Computer Applications, 36(2), 623–645. ISSN 1084-8045.

  10. Vlajic, N., Stevanovic, D., & Spanogiannopoulos, G. (2011). Strategies for improving performance of IEEE 802.15.4/ZigBee WSNs with path-constrained mobile sink(s). Computer Communications, 34(6), 743–757.

    Article  Google Scholar 

  11. Chanak, P., Banerjee, I., Wang, J., & Sherratt, R. S. (2014). Obstacle avoidance routing scheme through optimal sink movement for home monitoring and mobile robotic consumer devices. IEEE Transactions on Consumer Electronics, 60(4), 596–604.

    Article  Google Scholar 

  12. Tashtarian, F., Hossein Yaghmaee Moghaddam, M., Sohraby, K., & Effati, S. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions on Vehicular Technology, 64(7), 3177–3189. doi:10.1109/TVT.2014.2354338.

    Google Scholar 

  13. Yun, Y., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transaction on Mobile Computing, 9(9), 1308–1318.

    Article  Google Scholar 

  14. Tashtarian, F., Moghaddam, M. H. Y., Sohraby, K., & Effati, S. (2015). ODT: Optimal deadline-based trajectory for mobile sinks in WSN: A decision tree and dynamic programming approach. Computer Networks, 77, 128–143.

    Article  Google Scholar 

  15. Saim, G., Mubashir, H. R., Cho, S.-H., & Park, S.-H. (2014). An efficient trajectory design for mobile sink in a wireless sensor network. Computers & Electrical Engineering, 40(7), 2089–2100.

    Article  Google Scholar 

  16. Luo, J., & Hubaux, J.-P. (2010). Joint sink mobility and routing to increase the lifetime of wireless sensor networks: The case of constrained mobility. IEEE/ACM Transaction on Networking, 18(5), 1387–1400.

    Article  Google Scholar 

  17. Bi, Y., Sun, L., Ma, J., Li, N., Khan, I. A., & Chen, C. (2007). HUMS: An autonomous moving strategy for mobile sinks in data-gathering sensor networks. EURASIP Journal Wireless Communication Networking, 2007, 1–15.

    Article  Google Scholar 

  18. Konstantopoulos, C., Pantziou, G., Gavalas, D., Mpitziopoulos, A., & Mamalis, B. (2012). A rendezvous-based approach enabling energy-efficient sensory data collection with mobile sinks. IEEE Transaction on Parallel Distribution System, 23(5), 809–817.

    Article  Google Scholar 

  19. Mottaghia, S., & Zahabi, M. R. (2015). Optimizing LEACH clustering algorithm with mobile sink and rendezvous nodes. AEU - International Journal of Electronics and Communications, 69(2), 507–514.

    Article  Google Scholar 

  20. Liu, X., Zhao, H., Yang, X., & Li, X. (2013). SinkTrail: A proactive data reporting protocol for wireless sensor networks. IEEE Transaction on Computing, 62(1), 151–162.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, M., Yang, Y. Y., & Zhao, M. (2013). Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Transactions on Vehicular Technology, 62(4), 1472–1483.

    Article  Google Scholar 

  22. Abo-Zahhad, M., Ahmed, S. M., Sabor, N., & Sasaki, S. (2015). Mobile sink-based adaptive immune energy-efficient clustering protocol for improving the lifetime and stability period of wireless sensor networks. IEEE Sensors Journal, 15(8), 4576–4586.

    Article  Google Scholar 

  23. Ahmad, A., Javaid, N., Khan, Z. A., Qasim, U., & Alghamdi, T. A. (2014). (ACH)2: Routing scheme to maximize lifetime and throughput of wireless sensor networks. IEEE Sensors Journal, 14(10), 3516–3532.

    Article  Google Scholar 

  24. Pala, Z., Bicakci, K., & Turk, M. (2015). Effects of node mobility on energy balancing in wireless networks. Computers & Electrical Engineering, 41, 314–324.

    Article  Google Scholar 

  25. El Korbi, Inès, & Zeadally, Sherali. (2014). Energy-aware sensor node relocation in mobile sensor networks. Ad Hoc Networks, 16, 247–265.

    Article  Google Scholar 

  26. El-Moukaddem, F., Torng, E., & Xing, G. (2015). Maximizing network topology lifetime using mobile node rotation. IEEE Transactions on Parallel and Distributed Systems, 26(7), 1958–1970.

    Article  Google Scholar 

  27. Kinalis, A., Nikoletseas, S., Patroumpa, D., & Rolim, J. (2014). Biased sink mobility with adaptive stop times for low latency data collection in sensor networks. Information Fusion, 15(1), 56–63.

    Article  Google Scholar 

  28. Liu, W., Lu, K., Wang, J., Xing, G., & Huang, L. (2012). Performance analysis of wireless sensor networks with mobile sinks. IEEE Transactions on Vehicular Technology, 61(6), 2777–2788.

    Article  Google Scholar 

  29. Shi, Y., & Hou, Y. T. (2012). Some fundamental results on base station movement problem for wireless sensor networks. IEEE/ACM Transactions on Networking, 20(4), 1054–1067.

    Article  Google Scholar 

  30. Silva, R., Silva, J. S., & Boavida, F. (2014). Mobility in wireless sensor networks—Survey and proposal. Computer Communications, 52(1), 1–20. doi:10.1016/j.comcom.2014.05.008.

    Article  Google Scholar 

  31. Gu, Y., Ren, F., Ji, Y., & Li, J. (2015). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, PP(99), 1–12. doi:10.1109/COMST.2015.2388779.

    Google Scholar 

  32. Khan, M. I., Gansterer, W. N., & Haring, G. (2013). Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36(9), 965–978.

    Article  Google Scholar 

  33. Zhao, M., & Yang, Y. (2012). Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Transaction on Computers, 61(2), 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  34. Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Distributed mobile sink routing for wireless sensor networks: A survey. IEEE Communication Surveys & Tutorials., 16(2), 877–897.

    Article  Google Scholar 

  35. Jiang, Yisong, Shi, Weiren, Wang, Xiaogang, & Li, Hongbing. (2014). A distributed routing for wireless sensor networks with mobile sink based on the greedy embedding. Ad Hoc Networks, 20, 150–162.

    Article  Google Scholar 

  36. Zhu, C., Wu, S., Han, G., Shu, L., & Wu, H. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access: Industrial Sensor Networks with Advanced Data Management: Design and Security, 3, 381–396. doi:10.1109/ACCESS.2015.2424452.

    Google Scholar 

  37. Wang, N.-C., & Chiang, Y.-K. (2011). Power-aware data dissemination protocol for grid-based wireless sensor networks with mobile sinks. IET Communications, 5(18), 2684–2691.

    Article  MathSciNet  MATH  Google Scholar 

  38. Gu, Y., Ji, Y., Li, J., & Zhao, B. (2013). ESWC: Efficient scheduling for the mobile sink in wireless sensor networks with delay constraint. IEEE Transaction on Parallel Distribution System, 24(7), 1310–1320.

    Article  Google Scholar 

  39. Khushboo, K., & Daniel, A. K. (2015) Section based hybrid routing protocol for WSN using artificial bee colony. In International conference on advances in computer engineering and applications (ICACEA), pp. 887–892. doi:10.1109/ICACEA.2015.7164830.

  40. Udgata, S. K., Sabat, S. L., Mini, S. (2009). Sensor deployment in irregular terrain using artificial bee colony algorithm. In Nature & biologically inspired computing (NaBIC) 2009, pp. 1309–1314. doi:10.1109/NABIC.2009.5393734.

  41. Swarming (Honeybee). https://en.wikipedia.org/wiki/Swarming_(honey_bee).

Download references

Acknowledgements

This work was supported by DIKTI funded by Ministry of Research, Technology and Higher Education, Indonesia under Contract Number: 124.67/E4.4/2014. The authors would like to thank the reviewers for their constructive comments that have improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aripriharta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jong, GJ., Aripriharta, Hendrick et al. A Novel Queen Honey Bee Migration (QHBM) Algorithm for Sink Repositioning in Wireless Sensor Network. Wireless Pers Commun 95, 3209–3232 (2017). https://doi.org/10.1007/s11277-017-3991-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-3991-z

Keywords