Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysis of Energy Efficiency and Area Throughput in Large Scale MIMO Systems with MRT and ZF Precoding

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The large-scale multiple input multiple output (LS-MIMO) systems are equipped with a large number of antennas at the base station. These systems are capable of serving a larger number of user terminals, with massive gains in the form of energy and bandwidth efficiency. The energy efficiency of LS-MIMO system depends on the overall power consumption and data rate. In this paper, we have improved the energy efficiency of the LS-MIMO system by using maximum ratio transmission/combining and zero forced linear pre-coding schemes in single and multi-cell scenarios. We have jointly considered the uplink and downlink communications to propose an improved, more practical and more realistic power consumption model. The proposed model deliberates the power required for the power amplifier, linear processing and the circuit components at the base stations and user terminals. The outcome of this work provides a significant improvement in terms of energy efficiency and area throughput. The analytical results illustrate that the LS-MIMO systems achieve the maximum energy efficiency and area throughput wherein larger number of transmit antennas are installed at the base station to serve comparatively greater number of users terminals. The mathematical results depict the similar performance for imperfect channel state information in multi-cell setups. All aspects of power consumption during bidirectional communication are considered to provide precise results. Hence, the improvements in simulations results support the accuracy of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  2. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.

    Article  Google Scholar 

  3. Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Transactions on Communications, 31(2), 161–171.

    Google Scholar 

  4. Auer, G., et al. D2.3. (2012). Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. INFSO-ICT-247733 EARTH, Ver. 2.0.

  5. Chen, Y., Zhang, S., Xu, S., & Li, G. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.

    Article  Google Scholar 

  6. Smart 2020: Enabling the low carbon economy in the information age. (2008). The climate group and global e-sustainability initiative (GeSI). Technical Report Green Touch Consortium, Technical Report [Online]. Available: http://www.greentouch.org.

  7. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Massive MU-MIMO downlink TDD systems with linear precoding and downlink pilots. In Communication, control, and computing (Allerton), 51st annual allerton conference on (pp. 293–298).

  8. Tombaz, S., Vastberg, A., & Zander, J. (2011). Energy-and cost-efficient ultrahigh-capacity wireless access. IEEE Wireless Communications, 18(5), 18–24.

    Article  Google Scholar 

  9. Bjornson, E., Hoydis, J., Kountouris, M., & Debbah, M. (2014). Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits. IEEE Transactions on Information Theory, 60(11), 7112–7139.

    Article  MathSciNet  MATH  Google Scholar 

  10. Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  11. Rusek, F., Persson, D., Lau, B., Larsson, E., Marzetta, T., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  12. Van Chien, T., Bjornson, E., & Larsson, E. G. (2016). Joint power allocation and user association optimization for massive MIMO systems? IEEE Journal on Selected Areas in Communications, 15(9), 6384–6399.

    Google Scholar 

  13. Ngo, H., Larsson, E., & Marzetta, T. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.

    Article  Google Scholar 

  14. Miao, G. (2013). Energy-efficient uplink multi-user MIMO. IEEE Transactions on Wireless Communications, 12(5), 2302–2313.

    Article  Google Scholar 

  15. Bjornson, E., Kountouris, M., & Debbah, M. (2013). Designing multi-user MIMO for energy efficiency: When is massive MIMO the answer? In International Conference on Telecommunications (ICT).

  16. Ha,D., Lee, K., & Kang, J. (2013). Energy efficiency analysis with circuit power consumption in massive MIMO systems. In Proceeding of IEEE international symposium on personal, indoor and mobile radio communications (PIMRC). IEEE.

  17. Yang, H., & Marzetta, T. (2013). Total energy efficiency of cellular large scale antenna system multiple access mobile networks. In Proceedings of IEEE online conference on green communications (online green communications). IEEE.

  18. Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO in real propagation environments: Do all antennas contribute equally? IEEE Transactions on Wireless Communications, 63(11), 3917–3928.

    Article  Google Scholar 

  19. Bjornson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy efficient multi-user MIMO systems: Is massive MIMO the answer? In IEEE wireless communications and networking conference (WCNC). IEEE.

  20. Aftab Hossain, M., Cavdar, C., Bjornson, E., & Jantti, R. (2015). Energy-efficient load-adaptive massive MIMO. In IEEE wireless communications and networking conference (WCNC). IEEE.

  21. Further advancements for E-UTRA physical layer aspects (Release 9). (2013). 3GPP TS 36.814.

  22. Pillai, S., Suel, T., & Cha, S. (2005). The Perron–Frobenius theorem: Some of its applications. IEEE Signal Processing Magazine, 22(2), 62–75.

    Article  Google Scholar 

  23. Zhang, D., Zhou, Z., Yu, K., & Sato, T. (2015). Energy efficiency schemes with cellular partition zooming for Massive MIMO systems. In IEEE 12th international symposium on autonomous decentralized systems. IEEE.

  24. Boyd, S., & Vandenberg, L. Numerical linear algebra background. [Online]. Available: www.ee.ucla.edu/ee236b/lectures/num-lin-alg.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehangir Arshad.

Appendix

Appendix

The Optimized Number of Antennas (M) The optimized value of a number of LS-MIMO antennas (\( {\text{M}}^{\text{o}} \)) can be calculated by using the following theorem.

$$ {\text{M}}^{\text{o}} = \left\{ {\left( {\uprho{\text{N}} - 1} \right) + {\text{e}}^{{{\text{W}}\left( {\uprho^{2} \left( {\frac{1}{e}\left( {\left( {{\text{P}}_{\text{PA}} +\upalpha_{1} } \right)/\upalpha_{2} } \right) + \left( {{\text{N}} - 1} \right)} \right) + 1} \right)}} } \right\}{\bigg/}\rho $$
(22a)

(22a) is extracted from Lambert W function. It is defined by the equation \( x = W\left( x \right) e \wedge W\left( x \right) \) for any x \( \in \) C, where e is the natural number [15]. \( P_{PA} \) is given power in (13) that is the power consumption of amplifier. The values of \( \upalpha_{1} \) and \( \upalpha_{2} \) are the summations of circuit power of UT and BS given as (22a) and (22b)

$$ \upalpha_{1} = \left\{ {\left( {4 {\text{B}}\frac{{{\text{L}}^{\text{UL}} }}{{{\text{S}}_{CB}\Psi _{\text{UD}} }}} \right){\text{N}}^{2} + \left( {\frac{\text{B}}{{3{\text{S}}_{CB}\Psi _{\text{BS}} }}} \right){\text{N}}^{3} } \right\}\left\{ {\left( {{\text{P}}_{\text{fix}} + {\text{P}}_{\text{syn}} } \right) + \left( {{\text{P}}_{\text{UD}} } \right)} \right\}{\bigg/}{\text{N}} $$
(22b)
$$ \upalpha_{2} = \left\{ {\left( {{\text{B }}\left( {2 + 1/{\text{S}}_{CB} } \right)/\Psi _{\text{BS}} } \right){\text{N}} + \left( {{\text{B}}\left( {3 - 2{\text{L}}^{\text{DL}} } \right)/{\text{S}}_{CB}\Psi _{\text{BS}} } \right){\text{N}}^{2} + \left( {{\text{P}}_{\text{BS}} } \right)} \right\}{\bigg/}N $$
(22c)

The Optimized Transmit Power The optimized value of transmit power (\( \uprho^{o} \)) are also calculated by using Lambert function. Given as (23a)

$$ \uprho^{\text{o}} = \left\{ {{\text{e}}^{{{\text{W}}\left( {\uprho\left( {\frac{{\left( {{\text{M}} - {\text{N}}} \right) \left( {\upalpha_{1} + M\upalpha_{2} } \right)}}{\text{e}}\left( {\frac{\text{N}}{{{\text{P}}_{\text{PA}} }}} \right) + \frac{1}{\text{e}}} \right) + 1} \right)}} - \left( 1 \right)} \right\}{\bigg/}\uprho $$
(23a)

The value of \( {\text{P}}_{\text{PA}} \) is given in (13) that is power consumption of amplifier. The values of \( \upalpha_{1} \) and \( \upalpha_{2} \) are the summations of circuit power of UT and BS given above. The value of transmit power can be calculated by multiplying the optimized value of transmit power (\( \rho^{\text{o}} \)) and \( P_{PA} \) that is the power of amplifier \( \left[ {P_{Tx}^{ZF} = \left( {\rho^{o} } \right) \left( { P_{PA} } \right)} \right] \).

The Optimized Value of N It is calculated by finding the roots of the following polynomial equation in (23b) [15].

$$ \left\{ {1 - \left( {2{\text{S}}_{CB} /\left( {{\text{L}}^{\text{DL}} + {\text{L}}^{\text{UL}} } \right)} \right) - \varLambda_{2} - 2 \varLambda_{1} + \left( {{\text{S}}_{CB} \varLambda_{1} /\left( {{\text{L}}^{\text{DL}} + {\text{L}}^{\text{UL}} } \right)} \right)} \right\} = 0 $$
(23b)

where

$$ \Lambda _{1} = \left\{ {\left( {\left( {{\text{P}}_{\text{s}} + {\text{P}}_{\text{t}} } \right) + {\text{P}}_{\text{PA}} } \right)/ \left( {\frac{\text{B }}{{3{\text{S}}_{CB}\Psi _{\text{BS}} }} + \left( {\frac{{{\text{MB}}\left( {3 - 2\uptau^{\text{DL}} } \right) }}{{{\text{S}}_{CB} {\text{N}}\Psi _{\text{BS}} }}} \right)} \right)} \right\} $$
(23c)
$$ \Lambda _{2} = \left( {\frac{{{\text{S}}_{CB} }}{{\left( {{\text{L}}^{\text{DL}} + {\text{L}}^{\text{UL}} } \right)}}\left( {\frac{{4 {\text{B L}}^{\text{UL}} }}{{{\text{S}}_{CB}\Psi _{\text{BS}} }} + \frac{{{\text{B }}\left( {\frac{2}{\text{N}} + \frac{\text{M}}{{{\text{NS}}_{CB} }}} \right)}}{{\Psi _{\text{BS}} }}} \right)} \right){\bigg/} \left( {\frac{\text{B }}{{3{\text{S}}_{CB}\Psi _{\text{BS}} }} \left( {\frac{{{\text{MB}}\left( {3 - 2\uptau^{\text{DL}} } \right) }}{{{\text{S}}_{CB} {\text{N}}\Psi _{\text{BS}} }}} \right)} \right) $$
(23d)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, J., Li, J., Younas, T. et al. Analysis of Energy Efficiency and Area Throughput in Large Scale MIMO Systems with MRT and ZF Precoding. Wireless Pers Commun 96, 23–46 (2017). https://doi.org/10.1007/s11277-017-4149-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4149-8

Keywords