Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Non-Orthogonal Selection Cooperation Protocol with Interference in Multi-Source Cooperative Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work proposes a non-orthogonal selection cooperation scheme with interference for multi-source and single destination cooperative networks. In our model, the source nodes can cooperate for one another, i.e., each source node plays the dual role of a source and a relay, thus there is no need for relays. In addition, the source nodes can be continuously transmitted and without dedicated timeslots for cooperative transmissions, which can save system resources and improve spectral efficiency. However, by this way, it will introduce interference with the non-orthogonal transmission mechanism. To overcome this problem, we use general reception scheme in source nodes and successive interference cancellation technology in the destination node, which can reduce the effect of interference effectively. For interference-limited networks, we also derive the theoretical upper bound and lower bound of outage probability of our method. Through the outage probability analysis and comparison, the results show that the spectral efficiency is improved while the system still keeps acceptable transmission reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  2. Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hu, J., & Beaulieu, N. C. (2007). Closed-form expressions for the outage and error probabilities of decode-and-forward relaying in dissimilar Rayleigh fading channels. In Proceedings of the IEEE international conference on communications (pp. 5553–5557). Scotland, United kingdom: Glasgow.

  4. Datsikas, C. K., Sagias, N. C., Lazarakis, F. I., & Tombras, G. S. (2008). Outage analysis of decode-and-forward relaying over Nakagami-m fading channels. IEEE Signal Processing Letters, 15, 41–44.

    Article  Google Scholar 

  5. Ikki, S. S., & Ahmed, M. H. (2009). Performance analysis of multi-branch decode-and-forward cooperative diversity networks over Nakagami-m fading channels. In Proceedings of the IEEE international conference on communications (pp. 1–6). Germany: Dresden.

  6. Suraweera, H. A. P., Smith, J., & Armstrong, J. (2006). Outage probability of cooperative relay networks in Nakagami-m fading channels. IEEE Communications Letters, 10(12), 834–836.

    Article  Google Scholar 

  7. Duy, T. T., & Kong, H. Y. (2014). Adaptive cooperative decode-and-forward transmission with power allocation under interference constraint. Wireless Personal Communications, 74(2), 401–414.

    Article  Google Scholar 

  8. Lee, K. C., Li, C. P., Wang, T. Y., & Li, H. J. (2014). Performance analysis of dual-hop amplify-and-forward systems with multiple antennas and co-channel interference. IEEE Transactions on Wireless Communications, 13(6), 3070–3087.

    Article  Google Scholar 

  9. Altieri, A., Vega, L. R., Piantanida, P., & Galarza, C. G. (2014). On the outage probability of the full-duplex interference-limited relay channel. IEEE Journal Selection Areas Communications, 32(9), 1765–1777.

    Article  Google Scholar 

  10. Ilhan, H. (2015). Performance analysis of cooperative vehicular systems with co-channel interference over cascaded Nakagami-m fading channels. Wireless Personal Communications, 83(1), 203–214.

    Article  Google Scholar 

  11. Das, P., Mehta, N. B., & Singh, G. (2015). Novel relay selection rules for average interference-constrained cognitive AF relay networks. IEEE Transactions on Wireless Communications, 14(8), 4304–4315.

    Article  Google Scholar 

  12. Suraweera, N., & Beaulieu, N. C. (2015). Optimum combining in dual-hop AF relaying for maximum spectral efficiency in the presence of co-channel interference. IEEE Transactions on Communications, 63(6), 2071–2080.

    Article  Google Scholar 

  13. Raja, A., & Viswanath, P. (2011). Diversity-multiplexing tradeoff of the two-user interference channel. IEEE Transactions on Information Theory, 57(9), 5782–5793.

    Article  MathSciNet  MATH  Google Scholar 

  14. Zahavi, D., Zhang, L. L., Maric, I., Dabora, R., Goldsmith, A. J., & Cui, S. G. (2015). Diversity-multiplexing tradeoff for the interference channel with a relay. IEEE Transactions on Information Theory, 61(2), 963–982.

    Article  MathSciNet  MATH  Google Scholar 

  15. Weber, S. P., Andrews, J. G., Yang, X., & Veciana, G. D. (2007). Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Transactions on Information Theory, 53(8), 2799–2814.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sen, S., Santhapuri, N., Choudhury, R., & Nelakuditi, S. (2013). Successive interference cancellation: Carving out MAC layer opportunities. IEEE Transactions on Mobile Computers, 12(2), 346–357.

    Article  Google Scholar 

  17. Zhang, B., El-Hajjar, M., & Hanzo, L. (2014). Opportunistic relay selection for cooperative relaying in cochannel interference contaminated networks. IEEE Transactions on Vehicular Technology, 63(5), 2455–2461.

    Article  Google Scholar 

  18. Shi, S. L., Yang, L. X., & Zhu, H. B. (2014). A novel cooperative transmission scheme based on superposition coding and partial relaying. International Journal of Communication Systems, 27(11), 2889–2908.

    Google Scholar 

  19. Liu, Y., Man, Y., Song, M., Zhang, H. T., & Wang, L. (2015). A cooperative diversity transmission scheme by superposition coding relaying for a wireless system with multiple relays. Wireless Networks, 21(6), 1801–1817.

    Article  Google Scholar 

  20. Rezaei, S. S. C., Gharan, S. O., & Khandani, A. K. (2010). Relay scheduling in the half-duplex Gaussian parallel relay channel. IEEE Transactions on Information Theory, 56(6), 2668–2687.

    Article  MathSciNet  MATH  Google Scholar 

  21. Malik, S., Kim, C., Hwang, I., Kim, B., & Moon, S. (2012). Interference cancellation using improved precoding for cooperative relay in multiuser MIMO LTE-advanced. Telecommunications Review, 22(5), 732–747.

    Google Scholar 

  22. Vakil, S., & Liang, B. (2008). Cooperative diversity in interference limited wireless networks. IEEE Transactions on Wireless Communications, 7(8), 3185–3195.

    Article  Google Scholar 

  23. Bletsas, A., Dimitriou, A. G., & Sahalos, J. N. (2010). Interference-limited opportunistic relaying with reactive sensing. IEEE Transactions on Wireless Communications, 9(1), 14–20.

    Article  Google Scholar 

  24. Wang, H., Yang, S. Z., & Lin, J. Z. (2009). A distributed selection cooperation protocol with feedback and its DMT in nakagami-m fading channels. IEEE Communications Letters, 13(11), 844–846.

    Article  Google Scholar 

  25. Ding, Z. G., Krikidis, I., & Rong, B. (2012). On combating the half-duplex constraint in modern cooperative networks protocols and techniques. IEEE Wireless Communications, 19(6), 20–27.

    Article  Google Scholar 

  26. Argyriou, A. (2015). Multi-source cooperative communication with opportunistic interference cancelling relays. IEEE Transactions on Communications, 63(11), 4086–4096.

    Article  Google Scholar 

  27. Kim, E. C., Cha, J. S., & Kim, J. Y. (2009). Successive interference cancellation for cooperative communication systems. In International conference on convergence and hybrid information technology (pp. 652–656).

  28. Miridakis, N. I., & Vergados, D. D. (2013). A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems. IEEE Communications Surveys & Tutorials, 15(1), 312–335.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of the National Natural Science Foundation of China (Grant No. 61301125), and the Fundamental and Advanced Research Program of Chongqing (Grant No.cstc2015jcyjA40023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Appendices

Appendix 1: Proof of Lemma 1 and Its Two Corollaries

It is noted that throughout the derivation, if an exponential random variable with parameter \(\lambda\), and its mean value is \(1/\lambda\), then the probability density function (PDF)

$$f(x) = \left\{ \begin{array}{ll} \lambda {e^{ - \lambda x}} &\quad x > 0 \\ 0 &\quad x \le 0 \end{array}\right.$$
(37)

Lemma 1

Let X and Y be independent exponential random variables with parameters \({\lambda _1}\) and \({\lambda _2}\), respectively. Let \(Z = {k_1}X - {k_2}Y\) \(({k_1}> 0, {k_2} > 0)\), then the cumulative distribution function (CDF) of Z \((z > 0)\)

$$\begin{aligned} {F_Z}(z) = 1 - {e^{ - \frac{{{\lambda _1}}}{{{k_1}}} \cdot z}}{\left( {1 + \frac{{{\lambda _1}}}{{{\lambda _2}}} \cdot \frac{{{k_2}}}{{{k_1}}}} \right) ^{ - 1}} \end{aligned}$$
(38)

Proof

Let \(X' = {k_1}X\), \(Y' = {k_2}Y\), then \(X'\) and \(Y'\) obey exponential distribution with parameters \(\frac{{{\lambda _1}}}{{{k_1}}}\) and \(\frac{{{\lambda _2}}}{{{k_2}}}\), respectively, and \(Z = X' - Y'\). In order to solve \({F_Z}(z)\), we should solve the CDF of the difference between \(X'\) and \(Y'\), then we have

$$\begin{aligned} {F_Z}(z)& = \Pr \{ Z< z\} \nonumber \\& = \iint \limits _{X' - Y' < Z} {{f_{X'}}(x'){f_{Y'}}(y')dx'dy'} \nonumber \\& = \int _{ - \infty }^{ + \infty } {{f_{Y'}}(y'){F_{X'}}(z + y')dy'} \nonumber \\& = \int _{ - \infty }^{ + \infty } {\frac{{{\lambda _2}}}{{{k_2}}}{e^{ - \frac{{{\lambda _2}}}{{{k_2}}}y}} \cdot (1 - } {e^{ - \frac{{{\lambda _1}}}{{{k_1}}}(z + y)}})dy \end{aligned}$$
(39)

the non-zero range of the integral above

$$\begin{aligned} \left\{ \begin{array}{l} y> 0 \\ z + y> 0 \\ \end{array} \right. \Rightarrow \left\{ \begin{array}{l} y> 0 \\ y > - z \\ \end{array} \right. \end{aligned}$$
(40)

\(\square\)

Only considering \(z > 0\), we have \(y > 0\). Then

$$\begin{aligned} {F_Z}(z)= \int _0^{ + \infty } {\frac{{{\lambda _2}}}{{{k_2}}}{e^{ - \frac{{{\lambda _2}}}{{{k_2}}}y}} \cdot (1 - } {e^{ - \frac{{{\lambda _1}}}{{{k_1}}}(z + y)}})dy = 1 - {e^{ - \frac{{{\lambda _1}}}{{{k_1}}} \cdot z}}{\left( {1 + \frac{{{\lambda _1}}}{{{\lambda _2}}} \cdot \frac{{{k_2}}}{{{k_1}}}} \right) ^{ - 1}} \end{aligned}$$
(41)

Corollary 1

Let \({\left| {{\alpha _1}} \right| ^2}\) and \({\left| {{\alpha _2}} \right| ^2}\) be independent exponential random variables with parameters \({\lambda _1}\) and \({\lambda _2}\), respectively. And let \(P> 0, R> 0, {N_0} > 0\), then

$$\begin{aligned} \Pr \left\{ {\log \left( {1 + \frac{{P{{\left| {{\alpha _1}} \right| }^2}}}{{P{{\left| {{\alpha _2}} \right| }^2} + {N_0}}}} \right) < R} \right\} = 1 - {e^{ - \frac{{g{N_0}}}{{{P_{}}}} \cdot {\lambda _1}}}\left( {1 + g \cdot \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) { ^{ - 1}} \end{aligned}$$
(42)

Proof

$$\begin{aligned} Pr \left\{ {\log \left( {1 + \frac{{P{{\left| {{\alpha _1}} \right| }^2}}}{{P{{\left| {{\alpha _2}} \right| }^2} + {N_0}}}} \right)< R} \right\}& = \Pr \left\{ {\frac{{P{{\left| {{\alpha _1}} \right| }^2}}}{{P{{\left| {{\alpha _2}} \right| }^2} + {N_0}}}< g} \right\} \nonumber \\& = \Pr \left\{ {P{{\left| {{\alpha _1}} \right| }^2} - g \cdot P{{\left| {{\alpha _2}} \right| }^2} < g \cdot {N_0}} \right\} \end{aligned}$$
(43)

Let \({k_1} = P\), \({k_2} = g \cdot P\), \(Z = g \cdot {N_0}\), according to the result of Lemma 1, we have (42) and the proof is complete. \(\square\)

Corollary 2

Let \({\left| {{\alpha _1}} \right| ^2}\) and \({\left| {{\alpha _2}} \right| ^2}\) be independent exponential random variables with parameters \({\lambda _1}\) and \({\lambda _2}\), respectively. And let \(P> 0, R> 0, {N_0} > 0\), then we can obtain

$$\begin{aligned}&\begin{aligned}&Pr \left\{ {\left( {{{\left| {{\alpha _1}} \right| }^2} \ge {{\left| {{\alpha _2}} \right| }^2}} \right) \cap \left( {\log \left( {1 + \frac{{P{{\left| {{\alpha _1}} \right| }^2}}}{{P{{\left| {{\alpha _2}} \right| }^2} + {N_0}}}} \right) < R} \right) } \right\} \\&= \left\{ \begin{array}{ll} {\left( {1 + \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) ^{ - 1}} - {e^{ - \frac{{g \cdot {N_0}}}{P} \cdot {\lambda _1}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) ^{ - 1}}, &{} g > 1\\ {\left( {1 + \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) ^{ - 1}} \cdot \left[ {1 - {e^{ - \left( {{\lambda _1} + {\lambda _2}} \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] - {e^{ - {\lambda _1} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) ^{ - 1}}&{}\\ \cdot \left[ {1 - {e^{ - \left( {{\lambda _2} + g \cdot {\lambda _1}} \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] , &{} g \le 1\\ \end{array} \right. \end{aligned} \end{aligned}$$
(44)
$$\begin{aligned}&\begin{aligned}&Pr \left\{ \begin{array}{l} \left\{ {{{\left( {{{\left| {{\alpha _1}} \right| }^2}< \left| {{\alpha _2}} \right| } \right) }^2} \cap \left( {\log \left( {1 + \frac{{P{{\left| {{\alpha _2}} \right| }^2}}}{{P{{\left| {{\alpha _1}} \right| }^2} + {N_0}}}} \right)< R} \right) } \right\} \\ \cap \left( {\log \left( {1 + \frac{{P{{\left| {{\alpha _1}} \right| }^2}}}{{P{{\left| {{\alpha _2}} \right| }^2} + {N_0}}}} \right) < R} \right) \\ \end{array} \right\} \\&= \left\{ \begin{array}{ll} {\left( {1 + \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}} - {e^{ - {\lambda _2} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}},&{} g > 1 \\ {\left( {1 + \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}}\left[ {1 - {e^{ - ({\lambda _1} + {\lambda _2}) \cdot \frac{{g \cdot {N_0}}}{{P \cdot (1 - g)}}}}} \right] \\ - {e^{ - {\lambda _2} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}} \cdot \left[ {1 - {e^{ - ({\lambda _1} + g \cdot {\lambda _2}) \cdot \frac{{g \cdot {N_0}}}{{P \cdot (1 - g)}}}}} \right] , &{} g \leqslant 1 \\ \end{array} \right. \\ \end{aligned} \end{aligned}$$
(45)
$$\begin{aligned}&\begin{aligned}&Pr \left\{ \begin{array}{l} \left\{ {{{\left( {{{\left| {{\alpha _1}} \right| }^2}< \left| {{\alpha _2}} \right| } \right) }^2} \cap \left( {\log \left( {1 + \frac{{P{{\left| {{\alpha _2}} \right| }^2}}}{{P{{\left| {{\alpha _1}} \right| }^2} + {N_0}}}} \right) > R} \right) } \right\} \\ \quad \cap \left( {\log \left( {1 + \frac{{P{{\left| {{\alpha _1}} \right| }^2}}}{{{N_0}}}} \right) < R} \right) \\ \end{array} \right\} \\&= {e^{ - {\lambda _2} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}} \cdot \left[ {1 - {e^{ - ({\lambda _1} + g \cdot {\lambda _2}) \cdot \frac{{g \cdot {N_0}}}{P}}}} \right] \\ \end{aligned} \end{aligned}$$
(46)

Proof

Let \(X = {\left| {{\alpha _1}} \right| ^2}\), \(Y = {\left| {{\alpha _2}} \right| ^2}\), \({p_1}\), \({p_2}\), \({p_3}\) represent the probability to be solved above, respectively, then we obtain

$$\begin{aligned} {p_1}& = \Pr \left\{ {\left( {X \geqslant Y} \right) \cap \left( {PX - g \cdot PY< g \cdot {N_0}} \right) } \right\} \nonumber \\& = \mathop{\mathop{\iint}\limits_{Px - g \cdot Py < g \cdot {N_0}}}\limits_{x \geqslant y} {{f_X}(x){f_Y}(y)dxdy} \end{aligned}$$
(47)
$$\begin{aligned} {p_2}& = \Pr \left\{ \begin{array}{l} \left( {X< Y} \right) \cap \left( {PY - g \cdot PX< g \cdot {N_0}} \right) \cap \left( {PX - g \cdot PY< g \cdot {N_0}} \right) \\ \end{array} \right\} \nonumber \\& = \mathop{\mathop{\mathop{\iint}\limits _{Px - g \cdot Py< g \cdot {N_0}}}\limits_{Py - g \cdot Px< g \cdot {N_0}}}\limits_{x < y} {{f_X}(x){f_Y}(y)dxdy} \end{aligned}$$
(48)
$$\begin{aligned} {p_3}& = \Pr \left\{ \begin{array}{l} \left( {X< Y} \right) \cap \left( {PY - g \cdot PX> g \cdot {N_0}} \right) \cap \left( {X< \frac{{g \cdot {N_0}}}{P}} \right) \\ \end{array} \right\} \nonumber \\&= \mathop{\mathop{\mathop{\iint}\limits _{Py - g \cdot Px > g \cdot {N_0}}}\limits_{x< y}}\limits_{x < \frac{{g \cdot {N_0}}}{P}} {{f_X}(x){f_Y}(y)dxdy}\end{aligned}$$
(49)

To solve the integrals above, we divide them into \(g > 1\) and \(g \leqslant 1\).

\(g > 1\), we have

$$\begin{aligned}&\begin{aligned} {p_1}&= \int _0^{ + \infty } {{f_Y}(y)\left[ {{F_X}\left( {g \cdot y + \frac{{g \cdot {N_0}}}{P}} \right) - {F_X}\left( y \right) } \right] dy} \\&= \int _0^{ + \infty } {\left[ {{\lambda _2} \cdot {e^{ - \left( {{\lambda _1} + {\lambda _2}} \right) y}}{\text { - }}{\lambda _2} \cdot {e^{ - \frac{{g \cdot {N_0}}}{P} \cdot {\lambda _1}}} \cdot {e^{ - \left( {{\lambda _2} + g \cdot {\lambda _1}} \right) y}}} \right] } dy \\&= {\left( {1 + \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) ^{ - 1}} - {e^{ - \frac{{g \cdot {N_0}}}{P} \cdot {\lambda _1}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) ^{ - 1}} \\ \end{aligned} \end{aligned}$$
(50)
$$\begin{aligned}&\begin{aligned} {p_2}&= \int _0^{ + \infty } {{f_X}(x)\left[ {{F_Y}\left( {g \cdot x + \frac{{g \cdot {N_0}}}{P}} \right) - {F_Y}\left( x \right) } \right] dx} \\&= \int _0^{ + \infty } {\left[ {{\lambda _1} \cdot {e^{ - \left( {{\lambda _1} + {\lambda _2}} \right) x}} - {\lambda _1} \cdot {e^{ - {\lambda _2} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {e^{ - \left( {{\lambda _1} + g \cdot {\lambda _2}} \right) \cdot x}}} \right] } dx\\&= {\left( {1 + \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}} - {e^{ - {\lambda _2} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}} \\ \end{aligned} \end{aligned}$$
(51)

For \({p_3}\), the integration area of y is \((x + \frac{{g \cdot {N_0}}}{P}, + \infty )\), and the integration area of x is \((0, \frac{{g \cdot {N_0}}}{P})\). Thus, we get

$$\begin{aligned} \begin{aligned} {p_3}&= \int _0^{\frac{{g \cdot {N_0}}}{P}} {{f_X}(x)\int _{g \cdot x + \frac{{g \cdot {N_0}}}{P}}^{ + \infty } {{f_Y}(y)} dxdy} \\&= \int _0^{\frac{{g \cdot {N_0}}}{P}} {{\lambda _1} \cdot {e^{ - {\lambda _1}x}} \cdot {e^{ - {\lambda _2} \cdot \left( {g \cdot x + \frac{{g \cdot {N_0}}}{P}} \right) }}dx} \\&= {e^{ - {\lambda _2} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}} \cdot \left[ {1 - {e^{ - ({\lambda _1} + g \cdot {\lambda _2}) \cdot \frac{{g \cdot {N_0}}}{P}}}} \right] \\ \end{aligned} \end{aligned}$$
(52)

\(g \leqslant 1\), we have

$$\begin{aligned}&\begin{aligned} {p_1}&= \int _0^{\frac{{g \cdot {N_0}}}{{P(1 - g)}}} {{f_Y}(y)\left[ {{F_X}\left( {g \cdot y + \frac{{g \cdot {N_0}}}{P}} \right) - {F_X}\left( y \right) } \right] dy} \\&= {\left( {1 + \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) ^{ - 1}} \cdot \left[ {1 - {e^{ - \left( {{\lambda _1} + {\lambda _2}} \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] - {e^{ - {\lambda _1} \cdot \frac{{g \cdot {N_0}}}{P}}} \\&\;\;\;\;\cdot {\left( {1 + g \cdot \frac{{{\lambda _1}}}{{{\lambda _2}}}} \right) ^{ - 1}} \cdot \left[ {1 - {e^{ - \left( {{\lambda _2} + g \cdot {\lambda _1}} \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] \\ \end{aligned} \end{aligned}$$
(53)
$$\begin{aligned}&\begin{aligned} {p_2} =&{\left( {1 + \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}}\left[ {1 - {e^{ - ({\lambda _1} + {\lambda _2}) \cdot \frac{{g \cdot {N_0}}}{{P \cdot (1 - g)}}}}} \right] - {e^{ - {\lambda _2} \cdot \frac{{g \cdot {N_0}}}{P}}} \\&\cdot {\left( {1 + g \cdot \frac{{{\lambda _2}}}{{{\lambda _1}}}} \right) ^{ - 1}} \cdot \left[ {1 - {e^{ - ({\lambda _1} + g \cdot {\lambda _2}) \cdot \frac{{g \cdot {N_0}}}{{P \cdot (1 - g)}}}}} \right] \\ \end{aligned} \end{aligned}$$
(54)

For \({p_3}\), the integration area of y is \((g \cdot x + \frac{{g \cdot {N_0}}}{P}, + \infty )\), and the integration area of x is \((0, \frac{{g \cdot {N_0}}}{P})\). Although the integration area has been changed, the integration interval is the same, and the result is also same with \(g > 1\). \(\square\)

Combining (50) and (53), we get (44). And combining (51) and (54), we get (45). According to (52) and the integration interval is consistent in both cases, we get (46). Then we obtain the desired results.

Appendix 2: Proof of Lemma 2

Lemma 2

Let \({\left| {{\alpha _1}} \right| ^2},{\left| {{\alpha _2}} \right| ^2}, \ldots ,{\left| {{\alpha _N}} \right| ^2}\) be independent exponential random variables with parameters \({\lambda _1},{\lambda _2}, \ldots ,{\lambda _N}\), respectively. Let \({\left| {{\alpha _s}} \right| ^2}\) be an independent exponential random variable with parameter \({\lambda _s}\) and \({\left| {{\alpha _b}} \right| ^2} = \max \{ {\left| {{\alpha _1}} \right| ^2},{\left| {{\alpha _2}} \right| ^2}, \ldots ,{\left| {{\alpha _N}} \right| ^2}\}\), \(P> 0, R> 0, {N_0} > 0\), then we can obtain

$$\begin{aligned} \begin{aligned}&Pr \left\{ {\left( {{{\left| {{\alpha _b}} \right| }^2} \geqslant {{\left| {{\alpha _s}} \right| }^2}} \right) \cap \left( {\log \left( {1 + \frac{{P{{\left| {{\alpha _b}} \right| }^2}}}{{P{{\left| {{\alpha _s}} \right| }^2} + {N_0}}}} \right) < R} \right) } \right\} \\&= \left\{ \begin{array}{ll} \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m}} \cdot \left[ \begin{array}{l} {e^{ - \frac{{g \cdot {N_0}}}{P} \cdot \sum \nolimits _{j \in {S_m}} {{\lambda _j}} }} \cdot {\left( {1 + g \cdot \frac{{\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }}{{{\lambda _s}}}} \right) ^{ - 1}} \\ - {\left( {1 + \frac{{\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }}{{{\lambda _s}}}} \right) ^{ - 1}} \\ \end{array} \right] } &{} g > 1 \\ \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m} \cdot \left\{ {{e^{ - \frac{{g \cdot {N_0}}}{P} \cdot \sum \nolimits _{j \in {S_m}} {{\lambda _j}} }} \cdot {{\left( {1 + g \cdot \frac{{\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }}{{{\lambda _s}}}} \right) }^{ - 1}} } \right. } } \\ \cdot \left[ {1 - {e^{ - \left( {{\lambda _s} + g \cdot \sum \nolimits _{j \in {S_m}} {{\lambda _j}} } \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] &{} g \leqslant 1 \\ \left. { - {{\left( {1 + \frac{{\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }}{{{\lambda _s}}}} \right) }^{ - 1}} \cdot \left[ {1 - {e^{ - \left( {{\lambda _s} + \sum \nolimits _{j \in {S_m}} {{\lambda _j}} } \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] } \right\} \\ \end{array}\right. \\ \end{aligned} \end{aligned}$$
(55)

Proof

Set \(X = {\left| {{\alpha _b}} \right| ^2}\), \(Y = {\left| {{\alpha _s}} \right| ^2}\), p represents the probability to be solved, then we have

$$\begin{aligned} p& = \Pr \left\{ {\left( {X \geqslant Y} \right) \cap \left( {PX - g \cdot PY< g \cdot {N_0}} \right) } \right\} \nonumber \\& = \mathop{\mathop{\iint} \limits_{Px - g \cdot Py < g \cdot {N_0}}}\limits_{x \geqslant y} {{f_X}(x){f_Y}(y)dxdy} \end{aligned}$$
(56)

where

$$\begin{aligned} {f_Y}(y)& = {\lambda _s}{e^{ - {\lambda _s}y}} \end{aligned}$$
(57)
$$\begin{aligned} {F_X}(x)& = \Pr \{ X< x\} \nonumber \\& = \Pr \left\{ {{X_1}< x,{X_2}< x, \ldots ,{X_N} < x} \right\} \nonumber \\& = \prod \limits _{i = 1}^N {(1 - {e^{ - {\lambda _i}x}})} = 1 \nonumber \\& \quad + \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m}} } \cdot {e^{ - x \cdot \sum \nolimits _{j \in {S_m}} {{\lambda _j}} }} \end{aligned}$$
(58)

For the last step in (58), in order to expand \({F_X}(x)\), we use the following formula

$$\begin{aligned} \prod \limits _{i = 1}^K {(1 - {a_i}) = 1 + \sum \limits _{l = 1}^K {\mathop{\mathop{\sum}\limits_{{S_l} \subseteq \{ 1,2, \ldots ,K\}}}\limits_ {\left| {{S_l}} \right| = l} {{{( - 1)}^l}\prod \limits _{j \in {S_l}} {{a_j}} } } } \end{aligned}$$
(59)

Next, we divide (56) into \(g > 1\) and \(g \leqslant 1\). \(\square\)

\(g > 1\), the integration area of x is \((y, g \cdot y + \frac{{g \cdot {N_0}}}{P})\), and the integration area of y is \((0, + \infty )\). Then we have

$$\begin{aligned} \begin{aligned} p&= \int _0^{ + \infty } {{f_Y}(y)\left[ {{F_X}\left( {g \cdot y + \frac{{g \cdot {N_0}}}{P}} \right) - {F_X}\left( y \right) } \right] dy} \\&= \int _0^{ + \infty } {\left\{ {{\lambda _s}{e^{ - {\lambda _s}y}} \cdot \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m} \cdot \left[ \begin{array}{l} {e^{ - \left( {g \cdot y + \frac{{g \cdot {N_0}}}{P}} \right) \cdot \sum \nolimits _{j \in {S_m}} {{\lambda _j}} }} \\ - {e^{ - y\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }} \\ \end{array} \right] } } } \right\} } dy \\&= \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m} \cdot \left[ \begin{array}{l} {e^{ - \frac{{g \cdot {N_0}}}{P} \cdot \sum \nolimits _{j \in {S_m}} {{\lambda _j}} }} \cdot {\left( {1 + g \cdot \frac{{\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }}{{{\lambda _s}}}} \right) ^{ - 1}} \\ - {\left( {1 + \frac{{\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }}{{{\lambda _s}}}} \right) ^{ - 1}} \\ \end{array} \right] } } \\ \end{aligned} \end{aligned}$$
(60)

\(g \leqslant 1\), the integration area of x is \((y, g \cdot y + \frac{{g \cdot {N_0}}}{P})\), and the integration area of y is \((0, \frac{{g \cdot {N_0}}}{{P(1 - g)}})\). Thus, we just resolve the integral of y in (60), then we obtain

$$\begin{aligned} \begin{aligned} p&= \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m}} {{{( - 1)}^m} \cdot \left\{ {{e^{ - \frac{{g \cdot {N_0}}}{P} \cdot \sum \nolimits _{j \in {S_m}} {{\lambda _j}} }} \cdot {{\left( {1 + g \cdot \frac{{\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }}{{{\lambda _s}}}} \right) }^{ - 1}}} \right. } \\&\quad \cdot \left[ {1 - {e^{ - \left( {{\lambda _s} + g \cdot \sum \nolimits _{j \in {S_m}} {{\lambda _j}} } \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] \\&\quad \left. { - {{\left( {1 + \frac{{\sum \nolimits _{j \in {S_m}} {{\lambda _j}} }}{{{\lambda _s}}}} \right) }^{ - 1}} \cdot \left[ {1 - {e^{ - \left( {{\lambda _s} + \sum \nolimits _{j \in {S_m}} {{\lambda _j}} } \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] } \right\} \\ \end{aligned} \end{aligned}$$
(61)

Combining (60) and (61) completes the proof.

Appendix 3: Proof of Lemma 3

Lemma 3

Let \({\left| {{\alpha _1}} \right| ^2},{\left| {{\alpha _2}} \right| ^2}, \ldots ,{\left| {{\alpha _N}} \right| ^2}\) be independent exponential random variables with parameters \({\lambda _1},{\lambda _2}, \ldots ,{\lambda _N}\), respectively. Let \({\left| {{\alpha _s}} \right| ^2}\) be an independent exponential random variable with parameter \({\lambda _s}\) and \({\left| {{\alpha _b}} \right| ^2} = \max \{ {\left| {{\alpha _1}} \right| ^2},{\left| {{\alpha _2}} \right| ^2}, \ldots ,{\left| {{\alpha _N}} \right| ^2}\}\), \(P> 0, R> 0, {N_0} > 0\), then we can obtain

$$\begin{aligned} \begin{aligned}&Pr \left\{ \begin{array}{l} \left( {{{\left| {{\alpha _b}} \right| }^2}< {{\left| {{\alpha _s}} \right| }^2}} \right) \cap \left( {\log \left( {1 + \frac{{P{{\left| {{\alpha _s}} \right| }^2}}}{{P{{\left| {{\alpha _b}} \right| }^2} + {N_0}}}} \right)< R} \right) \\ \cap \left( {\log \left( {1 + \frac{{P{{\left| {{\alpha _b}} \right| }^2}}}{{P{{\left| {{\alpha _s}} \right| }^2} + {N_0}}}} \right) < R} \right) \\ \end{array}\right\} \\&= \left\{ \begin{array}{l} \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m} \cdot \left[ \begin{array}{l} {e^{ - {\lambda _s} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {\left( {1 + g \cdot \frac{{{\lambda _s}}}{t}} \right) ^{ - 1}} \\ - {\left( {1 + \frac{{{\lambda _s}}}{t}} \right) ^{ - 1}} \\ \end{array} \right] } }, g > 1 \\ \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m} \cdot \left\{ {{e^{ - {\lambda _s} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {{\left( {1 + g \cdot \frac{{{\lambda _s}}}{t}} \right) }^{ - 1}} \;\;\;\;\;\;\; g \leqslant 1 } \right. } } \\ \left. { \cdot \left[ {1 - {e^{ - \left( {g \cdot {\lambda _s} + t} \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] - {{\left( {1 + \frac{{{\lambda _s}}}{t}} \right) }^{ - 1}} \cdot \left[ {1 - {e^{ - \left( {{\lambda _s} + t} \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] } \right\} \\ \end{array} \right. \\ \end{aligned} \end{aligned}$$
(62)

where

$$\begin{aligned} t = \sum \limits _{j \in {S_m}} {{\lambda _j}} \end{aligned}$$
(63)

Proof

Let \(X = {\left| {{\alpha _b}} \right| ^2}\), \(Y = {\left| {{\alpha _s}} \right| ^2}\), p represents the probability to be solved, then we have

$$\begin{aligned} \begin{aligned} p&= \Pr \left\{ \begin{array}{l} \left( {X< Y} \right) \cap \left( {PY - g \cdot PX< g \cdot {N_0}} \right) \cap \left( {PX - g \cdot PY< g \cdot {N_0}} \right) \\ \end{array} \right\} \\&= \mathop{\mathop{\mathop{\iint}\limits_{Px - g \cdot Py< g \cdot {N_0}}}\limits_{Py - g \cdot Px< g \cdot {N_0}}}\limits_{x < y} {{f_X}(x){f_Y}(y)dxdy} \\ \end{aligned} \end{aligned}$$
(64)

where

$$\begin{aligned} {F_Y}(y)& = 1 - {e^{ - {\lambda _s}y}} \end{aligned}$$
(65)
$$\begin{aligned} {f_X}(x)& = \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^{m + 1}} \cdot t} } \cdot {e^{ - x \cdot t}} \end{aligned}$$
(66)

Next, we divide (64) into \(g > 1\) and \(g \leqslant 1\).

\(g > 1\) the integration area is shown in Fig. 11a. We can see from Fig. 11a, the integration area of x is \((0, + \infty )\), and the integration area of y is \((x, g \cdot x + \frac{{g \cdot {N_0}}}{P})\). Then we have

$$\begin{aligned} \begin{aligned} p&= \int _0^{ + \infty } {{f_X}(x)\int _x^{g \cdot x + \frac{{g \cdot {N_0}}}{P}} {{f_Y}(y)} dxdy} \\&= \int _0^{ + \infty } {{f_X}(x)\left[ {{F_Y}\left( {g \cdot x + \frac{{g \cdot {N_0}}}{P}} \right) - {F_Y}\left( x \right) } \right] dx} \\&= \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m} \cdot \left[ {{e^{ - {\lambda _s} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {{\left( {1 + g \cdot \frac{{{\lambda _s}}}{t}} \right) }^{ - 1}} - {{\left( {1 + \frac{{{\lambda _s}}}{t}} \right) }^{ - 1}}} \right] } } \\ \end{aligned} \end{aligned}$$
(67)

\(g \leqslant 1\), the integration area is shown in Fig. 11b. We an see from Fig. 11b, the integration area of y is \((x, g \cdot x + \frac{{g \cdot {N_0}}}{P})\), and the integration area of x is \((0, \frac{{g \cdot {N_0}}}{{P(1 - g)}})\). Thus, we just resolve the integral of x in (67), then we obtain

$$\begin{aligned} \begin{aligned} p&= \int _0^{\frac{{g \cdot {N_0}}}{{P(1 - g)}}} {{f_X}(x)\int _x^{g \cdot x + \frac{{g \cdot {N_0}}}{P}} {{f_Y}(y)} dxdy} \\&= \int _0^{\frac{{g \cdot {N_0}}}{{P(1 - g)}}} {{f_X}(x)\left[ {{F_Y}\left( {g \cdot x + \frac{{g \cdot {N_0}}}{P}} \right) - {F_Y}\left( x \right) } \right] dx} \\&= \sum \limits _{m = 1}^N {\mathop{\mathop{\sum}\limits_{{S_m} \subseteq \{ 1,2, \ldots ,N\}}}\limits_ {\left| {{S_m}} \right| = m} {{{( - 1)}^m} \cdot \left\{ {{e^{ - {\lambda _s} \cdot \frac{{g \cdot {N_0}}}{P}}} \cdot {{\left( {1 + g \cdot \frac{{{\lambda _s}}}{t}} \right) }^{ - 1}}} \right. } } \\&\quad\left. { \cdot \left[ {1 - {e^{ - \left( {g \cdot {\lambda _s} + t} \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] - {{\left( {1 + \frac{{{\lambda _s}}}{t}} \right) }^{ - 1}} \cdot \left[ {1 - {e^{ - \left( {{\lambda _s} + t} \right) \cdot \frac{{g \cdot {N_0}}}{{P(1 - g)}}}}} \right] } \right\} \end{aligned} \end{aligned}$$
(68)

\(\square\)

Combining (67) and (68) completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wei, X. & Li, M. A Non-Orthogonal Selection Cooperation Protocol with Interference in Multi-Source Cooperative Networks. Wireless Pers Commun 97, 2097–2130 (2017). https://doi.org/10.1007/s11277-017-4598-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4598-0

Keywords