Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Reflectarray with Octagonal Unit Cells for 5-G Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, five suggested unit cells are presented and compared for the design of a 28-GHz reflectarray antenna that can be used for 5-G mobile base-stations. The unit cells of these reflectarrays are built with combinations between octagonal rings and octagonal patches. The CST microwave studio is used in all design stages. All reflectarrays have an area of 10λ × 10λ with element size λ/2 × λ/2 and focal length equal to 10λ. A reflectarray antenna with size 15λ × 15λ is built for one of the unit cells with element size λ/2 × λ/2 and focal length 10λ to enhance the gain. Center feeding is used with a pyramidal horn antenna. Simulation results show that the unit cell composed of two octagonal rings with an octagonal patch inside gives a high gain with a quite large bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berry, D. G., Malech, R., & Kennedy, W. (1963). The reflectarray antenna. IEEE Transactions on Antennas and Propagation, AP-11, 645–651.

    Article  Google Scholar 

  2. Huang, J., & Encinar, J. A. (2008). Reflectarray antennas. New York: IEEE Press, Wiley-Interscience.

    Google Scholar 

  3. Chang, D., & Huang, M. (1995). Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization. IEEE Transactions on Antennas and Propagation, 43(8), 829–834.

    Article  Google Scholar 

  4. Huang, J., & Pogorzelski, R. J. (1998). A Ka-band micrstrip reflectarray with elements having variable rotation angles. IEEE Transactions on Antennas and Propagation, 46(5), 650–656.

    Article  Google Scholar 

  5. Chaharmir, M. R., Shaker, J., Cuhaci, M., & Ittipiboon, A. (2006). Broadband reflectarray antenna with double cross loops. Electronics Letters, 42(2), 65–66.

    Article  Google Scholar 

  6. Charchmir, M. R., & Shaker, J. (2008). Broadband reflectarray antenna with combination of cross and rectangle loop elements. Electronic Letters, 44(11), 658–659.

    Article  Google Scholar 

  7. Chaharmir, M. R., Shaker, J., & Legay, H. (2009). Broadband design of a single layer large reflectarray using multi cross loop elements. IEEE Transactions on Antennas and Propagation, 57(10), 3363–3366.

    Article  Google Scholar 

  8. Mohammadirad, M., Komjani, N., Chaharmir, M. R., Shaker, J., & Sebak, A. R. (2012). Impact of feed position on the operating band of broadband reflectarray antenna. IEEE Antennas and Wireless Propagation Letter, 11, 1104–1107.

    Article  Google Scholar 

  9. Vosoogh, A., Keyghobad, K., Khaleghi, A., & Mansouri, S. (2014). A high-efficiency Ku-band reflectarray antenna using single-layer multiresonance elements. IEEE Antennas and Wireless Propagation Letters, 13, 891–894.

    Article  Google Scholar 

  10. An, W., Xu, S., & Yang, F. (2014). A metal-only reflectarray antenna using slot-type elements. IEEE Antennas and Wireless Propagations Letters, 13, 1553–1556.

    Article  Google Scholar 

  11. Carrasco, E., Barba, M., & Encinar, J. A. (2007). Reflectarray element based on aperture-coupled patches with slots and lines of variable length. IEEE Transactions Antennas Propagation, 55(3), 820–825.

    Article  Google Scholar 

  12. Carrasco, E., Barba, M., & Encinar, J. A. (2006). Aperture-coupled reflectarray element with wide range of phase delay. Electronics Letters, 42(12), 667–668.

    Article  Google Scholar 

  13. Hasani, H., Kamyab, M., & Mirkamali, A. (2010). Broadband reflectarrayantenna incorporating disk elements with attached phase-delay lines. IEEE Antennas Wireless Propagation Letter, 9, 156–158.

    Article  Google Scholar 

  14. Carrasco, E., Encinar, J. A., & Barba, M. (2008). Bandwidth improvement in large reflectarrays by using true-time delay. IEEE Transactions on Antennas and Propagation, 56(8), 2496–2503.

    Article  Google Scholar 

  15. Zebrowski, M. (2012). Illumination and spillover efficiency calculations for rectangular reflectarray antennas. High Frequency Design (pp. 28–38).

  16. Encinar, J. A. (2001). Design of two-layer printed reflectarrays using patches of variable size. IEEE Transactions on Antennas and Propagation, 49(10), 1403–1410.

    Article  MathSciNet  Google Scholar 

  17. Chaharmir, M. R., Shaker, J., Cuhaci, M., & Sebak, A. (2003). Reflectarray with variable slots on ground plane. IEE Proceedings on Microwave Antennas and Propagations, 150(6), 436–439.

    Article  Google Scholar 

  18. Han, C., Rodenbeck, C., Huang, J., & Chang, K. (2004). A C/Ka dual frequency dual layer circularly polarized reflectarray with microstrip ring elements. IEEE Transactions on Antennas and Propagation, 52(11), 2871–2876.

    Article  Google Scholar 

  19. Yu, A., Yang, F., Elsherbeni, A. Z., Huang, J., & Kim, Y. (2012). An offset-fed X-band reflectarray antenna using a modified element rotation technique. IEEE Transactions on Antennas and Propagation, 60(3), 1619–1624.

    Article  Google Scholar 

  20. Derafshi, I., Komjani, N., & Mohammadirad, M. (2015). A single-layer broadband reflectarray antenna by using quasi-spiral phase delay line. IEEE Antennas and Wireless Propagations Letters, 14, 84–87.

    Article  Google Scholar 

  21. Ramli, M., Misran, N., Mansor, M. F., Islam, M. T. (2014). Analysis of reflectarray unit cell with capacitive effect. In 2nd International conference on information and communication technology (ICOICT) (pp. 95–99).

  22. Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken, NJ: Wiley.

    Google Scholar 

  23. Rajagopalan, H., Xu, S., & Rahmat-Samii, Y. (2012). On understand in the radiation mechanism of reflectarray antennas: An insightful and illustrative approach. IEEE Antennas and Propagation Magazine, 54(5), 14–38.

    Article  Google Scholar 

  24. CST-Computer Simulation Technology, Documentation. www.cst.com.

Download references

Acknowledgements

Prof. A.-R. Sebak, from the ECE Department, Concordia University Montreal, Quebec, Canada, is acknowledged for his major contribution and suggestions during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania R. Elsharkawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsharkawy, R.R., Hindy, M., Saleeb, A.A. et al. A Reflectarray with Octagonal Unit Cells for 5-G Applications. Wireless Pers Commun 97, 2999–3016 (2017). https://doi.org/10.1007/s11277-017-4657-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4657-6

Keywords