Abstract
Privacy-preserving continuous data aggregation in wireless sensor networks has broad application prospects, such as environmental monitoring, health care, etc. However, the existing secure aggregation algorithms focus on snapshot data aggregation, so they are not suitable for continuous data aggregation in view of traffic and energy consumption. We propose a privacy preserving, energy-efficient and scalable continuous data aggregation (PECDA). PECDA takes advantage of secure channels to ensure data privacy to counter dramatic energy consumption caused by heavy encryption/decryption operations. In addition, PECDA filters data and thus greatly reduces traffic based on the temporal correlation of sensory data. Therefore, PECDA significantly reduces energy consumption and prolongs the lifetime of network. Theoretical analysis and experimental results show that PECDA has low communication overhead, energy-efficiency, high safety and scalability.
Similar content being viewed by others
References
Lin, H. C., & Chen, W. Y. (2017). An approximation algorithm for the maximum-lifetime data aggregation tree problem in wireless sensor networks. IEEE Transactions on Wireless Communications, 16(6), 3787–3798.
Abbasi-Daresari, S., & Abouei, J. (2016). Toward cluster-based weighted compressive data aggregation in wireless sensor networks. Ad Hoc Networks, 36, 368–385.
Bagaa, M., Younis, M., Djenouri, D., et al. (2015). Distributed low-latency data aggregation scheduling in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 11(3), 49.
He, W., Liu, X., Nguyen, H. V., et al. (2011). PDA: Privacy-preserving data aggregation for information collection. ACM Transactions on Sensor Networks (TOSN), 8(1), 6.
Ozdemir, S., Peng, M., & Xiao, Y. (2015). PRDA: Polynomial regression-based privacy-preserving data aggregation for wireless sensor networks. Wireless communications and mobile computing, 15(4), 615–628.
Ozdemir, S., & Xiao, Y. (2011). Integrity protecting hierarchical concealed data aggregation for wireless sensor networks. Computer Networks, 55(8), 1735–1746.
Groat, M. M., He, W., & Forrest, S. (2011). KIPDA: k-indistinguishable privacy-preserving data aggregation in wireless sensor networks. In Proceedings of the 30th IEEE international conference on computer communications. Shanghai, China, pp. 2024–2032.
Elhoseny, M., Yuan, X., El-Minir, H. K., et al. (2016). An energy efficient encryption method for secure dynamic WSN. Security and Communication Networks, 9(13), 2024–2031.
Silberstein, A., Braynard, R., & Yang, J. (2006). Constraint chaining: on energy-efficient continuous monitoring in sensor networks. In Proceedings of the 2006 ACM SIGMOD international conference on management of data. ACM, pp. 157–168.
Yu, L., Li, J., Cheng, S., et al. (2014). Secure continuous aggregation in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(3), 762–774.
Ji, S., He, J. S., Pan, Y., et al. (2013). Continuous data aggregation and capacity in probabilistic wireless sensor networks. Journal of Parallel and Distributed Computing, 73(6), 729–745.
Elhoseny, M., Elminir, H., Riad, A., et al. (2016). A secure data routing schema for WSN using Elliptic Curve Cryptography and homomorphic encryption. Journal of King Saud University-Computer and Information Sciences, 28(3), 262–275.
Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM conference on computer and communications security. ACM, pp. 41–47.
Taoyang, Fu, Wenchih, Peng, & Wangchien, Lee. (2010). Parallelizing itinerary-based KNN query processing in wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 22(5), 711–729.
Samuel, M. (2004). Intel lab data. http://db.csail.mit.edu/labdata/labdata.html, p. 6.
Acknowledgements
This work is supported by the National Natural Science Foundation of China (61402014, 61373015, 61672039, 61602009), Fundamental Research Funds for the Central Universities, NUAA (NP2013307, NZ2013306), Natural Science Foundation of Anhui Province (1508085QF133), Research Program of Anhui Province Education Department (KJ2014A088).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, T., Qin, X., Ding, Y. et al. Privacy-Preserving and Energy-Efficient Continuous Data Aggregation Algorithm in Wireless Sensor Networks. Wireless Pers Commun 98, 665–684 (2018). https://doi.org/10.1007/s11277-017-4889-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-017-4889-5