Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Reducing Power Consumption of Wireless Networks Through Collaborative DMC Mobile Clusters

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Reducing the energy consumption of the wireless networks is significantly important for the economic and ecological sustainability of the ICT industry, as high energy consumption may limit the performance of wireless networks, and is one of the main network costs. To solve the energy consumption problem, especially on the terminal side, a scheme known as distributed mobile cloud (DMC) is considered to be a potential solution. Multiple mobile terminals (MTs) can cooperatively take advantage of good quality links among the MTs to save energy when receiving from the Base Station. In this paper, we aim to find the optimal transmit power to further reduce the energy consumption of DMC. From simulation studies, it is shown that up to 80% energy savings can be accomplished when using optimal transmit power, compared to using the standard DMC without exploring the optimal transmit power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vadgama, S. (2009). Trends in green wireless access. Fujitsu Scientific and Technical Journal, 45(4), 404–408.

    Google Scholar 

  2. Fettweis, G., & Zimmermann, E. (2008). ICT energy consumption-trends and challenges. In the 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008).

  3. Tao, C., Yang, Y., Zhang, H., Kim, H., & Horneman, K. (2011). Network energy saving technologies for green wireless access networks. IEEE Wireless Communications, 18(5), 30–38.

    Article  Google Scholar 

  4. Ferling D., Bohn T., Zeller D., Frenger P., Godor I., Jading Y., & Tomaselli W. (2010). Energy efficiency approaches for radio nodes. In Future Network and Mobile Summit (pp. 1–9).

  5. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., et al. (2016). Energy-efficient offloading for mobileedge computing in 5G heterogeneous networks. IEEE Access, 4, 5896–5907.

    Article  Google Scholar 

  6. Peng, M., Zhang, K., Jiang, J., Wang, J., & Wang, W. (2015). Energy-efficient resource assignment and power allocation in heterogeneous cloud radio access networks. IEEE Transactions on Vehicular Technology, 64(11),

  7. Abrol, A., & Kumar J. R. (2016). Power optimization in 5G networks: A step towards GrEEn communication. IEEE Access, 4, 1355–1374.

    Article  Google Scholar 

  8. Chang, Z. & Ristaniemi, T. (2013). Energy efficiency of collaborative OFDMA mobile clusters. In IEEE Consumer Communications and Networking Conference (pp. 74–78).

  9. Chang, Z., Gong, J., Ristaniemi, T., & Niu, Z. (2016). Energy efficient resource allocation and user scheduling for collaborative mobile clouds with hybrid receivers. IEEE Transactions on Vehicular Technology, 65(12), 9834–9846.

    Article  Google Scholar 

  10. Zheng Chang, J., Gong, Y., Li, Z., Zhou, T., Ristaniemi, G., Shi, Z., Han et al. (2016). Energy efficient resource allocation for wireless power transfer enabled collaborative mobile clouds. IEEE Journal on Selected Area in Communications, 34(12), 3438–3450.

    Article  Google Scholar 

  11. Datla D., Xuetao C., Newman T. R., Reed J. H., & Bose T. (2009). Power efficiency in wireless network distributed computing. IEEE VTC Spring (pp. 1–5).

  12. Radwan, A., & Rodriguez, J. (2012). Energy saving in multi-standard mobile terminals through short-range cooperation. EURASIP Journal on Wireless Communications and Networking,. doi:10.1186/1687-1499-2012-159.

  13. Kumar, K., Liu, J., Yung-Hsiang, L., & Bhargava, B. (2012). A survey of computation offloading for mobile systems. Mobile Networks and Applications, 18(1), 129–140.

    Article  Google Scholar 

  14. Barbarossa, S., Sardellitti, S., & Di Lorenzo, P. (2014). Distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Processing Magazine, 31(6), 45–55.

    Article  Google Scholar 

  15. Schurgers, C. (2001). Modulation scaling for energy aware communication systems. In Proceedings of ISLPED.

  16. Rappaport, T. S. (1996). Wireless communications principles and practice. Upper Saddle River: Prentice-Hall.

    MATH  Google Scholar 

  17. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  18. Panichpapiboon, S., Ferrari, G., & Tonguz, O. K. (2006). Optimal transmit power in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(10), 1432–1447.

    Article  Google Scholar 

  19. Schurgers, C. Aberthorne, O., & Srivastava M. (2011). Modulation scaling for Energy Aware Communication Systems. In International symposium on Low power electronics and design (pp. 96–99).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ostovar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostovar, A., Chang, Z. Reducing Power Consumption of Wireless Networks Through Collaborative DMC Mobile Clusters. Wireless Pers Commun 98, 1771–1784 (2018). https://doi.org/10.1007/s11277-017-4944-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4944-2

Keywords