Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Machine-to-Machine Content Retrieval in Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Machine-to-Machine (M2M) communication is a distinct capability that enables communications with anything. With the expected connection among several tens of billions of addressable mobile devices and the exchange of a huge amount of content, the Internet and mobile communication are entering a new era that inevitably faces several challenges, especially from a content dissemination perspective. It has been exposed to many limitations such as high control overhead, frequent location updates, and network congestion. To resolve such limitations, this paper proposes an efficient hierarchical routing and content retrieval mechanism, which is called Hierarchical Routing (H-Routing) for the wireless network based on Content-Centric Networking (CCN). The H-Routing is composed of a novel content discovery approach and a common service platform for generic communications and the integration of heterogeneous devices. The proposed mechanism uses CCN and Chord-like lookup in a hierarchical M2M system in the wireless mobile environment. The H-Routing mechanism reduces unnecessary flooding of content request messages, control overhead, and the waste of resources. We also implemented the proposed mechanism in the simulation environment and analyze the performance in terms of throughput, Interest packet overhead, and Interest error ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Nguyen, T.-D., Al-Saffar, A., & Huh, E. N. (2010). A dynamic id-based authentication scheme. In The 6th international conference on networked computing and advanced information management (pp. 248–253).

  2. Katusic, D., Weber, M., Bojic, I., Jezic, G., & Kusek, M. (2012). Market, standardization, and regulation development in machine-to-machine communications. In SoftCOM 2012, 20th international conference on software, telecommunications and computer networks (pp. 1–7).

  3. Feki, M. A., Kawsar, F., Boussard, M., & Trappeniers, L. (2013). The internet of things: The next technological revolution. Computer, 46, 24–25.

    Article  Google Scholar 

  4. Roggen, D., Troster, G., Lukowicz, P., Ferscha, A., Millan, J. del R., & Chavarriaga, R. (2013). Opportunistic human activity and context recognition. Computer, 46(2), 36–45.

    Article  Google Scholar 

  5. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the 2001 conference on applications, technologies, architectures, and protocols for computer communications, SIGCOMM ’01 (pp. 149–160). New York, NY, USA: ACM.

  6. Kim, S., & Suk, J. (2016). Efficient peer-to-peer context awareness data forwarding scheme in emergency situations. Peer-to-Peer Networking and Applications, 9(3), 477–486.

    Article  Google Scholar 

  7. Van den Abeele, F., Hoebeke, J., Teklemariam, G. K., Moerman, I., & Demeester, P. (2015). Sensor function virtualization to support distributed intelligence in the internet of things. Wireless Personal Communications, 81(4), 1415–1436.

    Article  Google Scholar 

  8. Park, J., Kwon, H., & Kang, N. (2017). Iot-cloud collaboration to establish a secure connection for lightweight devices. Wireless Networks, 23(3), 681–692.

    Article  Google Scholar 

  9. Kloch, C., Petersen, E. B., & Madsen, O. B. (2011). Cloud based infrastructure, the new business possibilities and barriers. Wireless Personal Communications, 58(1), 17–30.

    Article  Google Scholar 

  10. Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kye, H. K., Scott, S., et al. (2007). A data-oriented (and beyond) network architecture. SIGCOMM Computer Communication Review, 37(4), 181–192.

    Article  Google Scholar 

  11. Dannewitz, C., Kutscher, D., Ohlman, B., Farrell, S., Ahlgren, B., & Karl, H. (2013). Network of information (netinf)? An information-centric networking architecture. Computer Communications, 36(7), 721–735.

    Article  Google Scholar 

  12. Dannewitz, C., Golic, J., Ohlman, B., & Ahlgren, B. (2010). Secure naming for a network of information. In 2010 INFOCOM IEEE conference on computer communications workshops (pp. 1–6).

  13. Trossen, D., & Parisis, G. (2012). Designing and realizing an information-centric internet. IEEE Communications Magazine, 50(7), 60–67.

    Article  Google Scholar 

  14. Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., & Braynard, R. L. (2009) . Networking named content. In Proceedings of the 5th international conference on emerging networking experiments and technologies, CoNEXT ’09 (pp. 1–12). New York, NY, USA: ACM.

  15. Bosunia, M. R., Kim, A., Jeong, D. P., Park, C., & Jeong, S.-H. (2015). Enhanced multimedia data delivery based on content-centric networking in wireless networks. Applied Mathematics and Information Sciences, 9(2L), 579–589.

    Google Scholar 

  16. Seo, D. B., Jeong, C.-S., Jeon, Y.-B., & Lee, K.-H. (2015). Cloud infrastructure for ubiquitous M2M and IoT environment mobile application. Cluster Computing, 18(2), 599–608.

    Article  Google Scholar 

  17. Hussain, F., Anpalagan, A., & Vannithamby, R. (2014). Medium access control techniques in M2M communication: Survey and critical review. Transactions on Emerging Telecommunications Technologies, 28(1), e2869.

    Article  Google Scholar 

  18. Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58(1), 49–69.

    Article  Google Scholar 

  19. Hart, J. K., & Martinez, K. (2015). Toward an environmental internet of things. Earth and Space Science, 2(5), 194–200.

    Article  Google Scholar 

  20. Paul, A., & Rho, S. (2016). Probabilistic model for M2M in IoT networking and communication. Telecommunication Systems, 62(1), 59–66.

    Article  Google Scholar 

  21. Cheng, R.-G., Chen, N.-S., Chou, Y.-F., & Becvar, Z. (2015). Offloading multiple mobile data contents through opportunistic device-to-device communications. Wireless Personal Communications, 84(3), 1963–1979.

    Article  Google Scholar 

  22. D’Ambrosio, M., Dannewitz C., Karl, H., Vercellone, V. (2011). MDHT: A hierarchical name resolution service for information-centric networks. In Proceedings of the ACM SIGCOMM workshop on information-centric networking, ICN ’11 (pp. 7–12). New York, NY, USA: ACM.

  23. Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Arianfar, S., & Nikander, P. (2009). Lipsin: Line speed publish/subscribe inter-networking. SIGCOMM Computer Communication Review, 39(4), 195–206.

    Article  Google Scholar 

  24. Zhang, Y., Huang, T., Liu, J., Chen, J. Y., & Liu, Y. J. (2013). Reverse-trace routing scheme in content centric networking. The Journal of China Universities of Posts and Telecommunications, 20(5), 22–29.

    Article  Google Scholar 

  25. Sun, L., Song, F., Yang, D., & Qin, Y. (2013). DHR-CCN, distributed hierarchical routing for content centric network. Journal of Internet Services and Information Security, 3, 71–82.

    Google Scholar 

  26. Bolla, R., Rapuzzi, R., Repetto, M. (2009). A user-centric mobility framework for multimedia interactive applications. In 2009 6th international symposium on wireless communication systems (pp. 293–297).

  27. Lee, J., & Kim, D. (2011). Proxy-assisted content sharing using content centric networking (CCN) for resource-limited mobile consumer devices. IEEE Transactions on Consumer Electronics, 57(2), 477–483.

    Article  Google Scholar 

  28. Baccelli, E., Mehlis, C., Hahm, O., Schmidt, T. C., & Wählisch, M. (2014). Information centric networking in the IoT: Experiments with ndn in the wild. In Proceedings of the 1st ACM conference on information-centric networking, ACM-ICN ’14 (pp. 77–86). New York, NY, USA: ACM.

  29. Amadeo, M., Campolo, C., Molinaro, A., & Mitton, N. (2013). Named data networking: A natural design for data collection in wireless sensor networks. In 2013 IFIP wireless days (WD) (pp. 1–6).

  30. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (iot): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7):1645–1660. Including special sections: Cyber-enabled distributed computing for ubiquitous cloud and network services & cloud computing and scientific applications? Big data, scalable analytics, and beyond.

  31. Amadeo, M., Molinaro, A., & Ruggeri, G. (2013). E-chanet: Routing, forwarding and transport in information-centric multihop wireless networks. Computer Communications, 36(7), 792–803.

    Article  Google Scholar 

  32. Park, C. M., Rehman, R. A., & Kim, B. S. (2017). Packet flooding mitigation in CCN-based wireless multimedia sensor networks for smart cities. IEEE Access, 5, 11054–11062.

    Article  Google Scholar 

  33. Song, F., Ai, Z. Y., Li, J. J., Pau, G., Collotta, M., You, I., et al. (2017). Smart collaborative caching for information-centric IoT in fog computing. Sensors, 17(11), 2512.

    Article  Google Scholar 

  34. Borgia, E., Bruno, R., & Passarella, A. (2018). Making opportunistic networks in iot environments CCN-ready: A performance evaluation of the mobccn protocol. Computer Communications, 123, 81–96.

    Article  Google Scholar 

  35. Montenegro, G., Hui, J., Culler, D., & Kushalnagar, N. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. RFC 4944, September.

Download references

Acknowledgements

This work was supported by Institute for Information & communications Technology Promotion (IITP) Grant funded by the Korea government (MSIT) (No. 2013-0-00409, Research and Development of 5G Mobile Communications Technologies using CCN-based Multi-dimensional Scalability). This work was supported by Hankuk University of Foreign Studies Research Fund of 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ho Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosunia, M.R., Jeong, SH. Machine-to-Machine Content Retrieval in Wireless Networks. Wireless Pers Commun 107, 1465–1490 (2019). https://doi.org/10.1007/s11277-018-5975-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5975-z

Keywords