Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High-Performance GLR Detector for Moving Target Detection in OFDM Radar-Based Vehicular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays, orthogonal frequency division multiplexing (OFDM) radars have been used in many applications such as target detection and recognition in vehicular networks and surveillance systems, according to their frequency diversity property. The model of the received signal in an OFDM radar based on target’s parameters has a non-linear form with respect to unknown velocity and scattering coefficients, so there is no possibility of achieving a closed form solution for Maximum Likelihood Estimation of the unknown parameters and so the Neyman–Pearson detector. Therefore, in all published works, the generalized likelihood ratio (GLR) detector is obtained for the target with known velocity, or in case of simultaneous unknown velocity and scattering coefficients, only a wide two-dimensional grid search over all possible values of the unknown parameters is considered to maximize the Likelihood ratio. In this paper, a new method is proposed for simultaneous estimations of target velocity and scattering coefficients using a coordinate descent approach, which reduces the above nonlinear problem to two linear problems, and makes the implementation of GLR detector efficient. The simulation results confirm the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee, K.-C., Huang, C.-W., & Fang, M.-C. (2008). Radar target recognition by projected features of frequency diversity RCS. Progress in Electromagnetics Research, PIER, 81, 121–133.

    Article  Google Scholar 

  2. Skolnik, M. (2001). Introduction to radar system (3rd ed.). New York, NY: McGraw-Hall.

    Google Scholar 

  3. Skolnik, M. (1985). Fifty years of radar. Proceedings of the IEEE, 73(2), 182–197.

    Article  Google Scholar 

  4. Mohseni, R., Sheikhi, A., & Masnadi Shirazi, M. A. (2010). Multicarrier constant envelope OFDM signal design for radar applications. International Journal of Electronics and Communications (AEU), 64(11), 999–1008.

    Article  Google Scholar 

  5. https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2013.0228.

  6. Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2009) Efficient compression of wavelet packet OFDM radar signals. In Proceedings of the 2009 IET radar conference, China (Vol. 1, pp. 708–712).

  7. Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2008). A new approach to compress multi-carrier phase coded signals. In Proceedings of the 2008 IEEE radar conference, Rome, Italy (pp. 442–447).

  8. Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2008). Constant envelope OFDM signals for radar applications. In Proceedings of the 2008 IEEE radar conference, Rome, Italy (pp. 453–457).

  9. Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2008). Wavelet packet based OFDM radar signals. In Proceedings of radar 2008 Conference, Adelaide, Australia (pp. 579–584).

  10. Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2008). Compression of multi-carrier phase coded radar signals with low sampling rate. In Proceedings of radar 2008 conference, Adelaide, Australia (pp. 753–756).

  11. Gahramani, M., Mohseni, R., Sheikhi, A., & Saeimanesh, F. (2008). Optimum two-pulse UWB detector for different target fluctuation models. In Proceedings of radar 2008 conference, Adelaide, Australia (pp. 355–359).

  12. Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M.A. (2008). UWB radars based on wavelet packet OFDM signals. In Proceedings of the 2008 ICUWB conference, Hannover, Germany (Vol. 2, pp. 89–92).

  13. Stralka, J. P. (2008). Applications of orthogonal frequency-division multiplexing (OFDM) to radar. Ph.D. dissertation, The Johns Hopkins Univ., Baltimore, MD.

  14. Kay, S. M. (1998). Fundamentals of statistical signal processing: Detection theory. Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  15. Dicke, R. H. (1953). Object detection system. U.S.patent 2624876.

  16. Trees, H. L. V. (1968). Detection, estimation, and modulation theory (Vol. 3). New York: Wiley.

    MATH  Google Scholar 

  17. Shi, . Z. G., Qiao, S., & Chen, K. S. (2007). Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator. Progress In Electromagnetics Research, PIER, 77, 1–14.

    Article  Google Scholar 

  18. Mohseni, R., Sheikhi, A., & Masnadi Shirazi, M. A. (2008). Compression of multicarrier phase-coded radar signals based on discrete fourier transform (DFT). Progress in Electromagnetics Research (PIER) C, 5, 93–117.

    Google Scholar 

  19. Mohseni, R., Sheikhi, A., & Shirazi, M. (2008). Constant envelope OFDM signals for radar applications. In Proceedings of the IEEE radar conference (pp. 1–5).

  20. Sebt, M. A., Norouzi, Y., Sheikhi, A., & Nayebi, M. M. (2008). OFDM radar signal design with optimized ambiguity function. In IEEE radar conference (pp. 1–5).

  21. Pandharipande, A. (2002). Principles of OFDM. IEEE Potentials, 21(2), 16–19.

    Article  MathSciNet  Google Scholar 

  22. May, T., & Rohling, H. (2001). Chap. 17–25. In A. F. Molisch (Ed.), Orthogonal frequency division multiplexing in wide band wireless digital communications. Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  23. Sen, S., & Nehorai, A. (2010). Multi-objective optimized OFDM radar waveform for target detection in multipath scenarios. In 44th Asilomar conference on signals, systems and computers, Pacittc Grove, CA (pp. 618–622).

  24. Sen, S., & Nehorai, A. (2011). Adaptive OFDM radar for target detection in multipath scenarios. IEEE Transactions Signal Process, 59(1), 78–90.

    Article  MathSciNet  MATH  Google Scholar 

  25. Sen, S., Hurtado, M., & Nehorai, A. (2009). Adaptive OFDM radar for detecting a moving target in urban scenarios. In Proceedings 4th international waveform diversity and design (WDD) conference, Orlando, FL (pp. 264–268).

  26. Sen, S., & Nehorai, A. (2009). Target detection in clutter using adaptive OFDM radar. IEEE Signal Processing Letters, 16(7), 592–598.

    Article  Google Scholar 

  27. Sen, S., Tang, G., & Nehorai, A. (2011). Sparsity-based estimation for target detection in multipath scenarios. In IEEE Radar Conference, Kansas City, MO.

  28. Sen, S., Tang, G., & Nehorai, A. Multi-objective optimization-based OFDM radar waveform design for target detection. IEEE Transactions on Signal Processing. https://ieeexplore.ieee.org/abstract/document/5613205.

  29. May, T., & Rohling, H. (2001). Orthogonal frequency division multiplexing. In . A. F. Molisch (Ed.), Wideband wireless digital communications., Ch. 17–25 Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  30. Asada, J. (2010). Target detection with MSN Algorithm for the bistatic radar using digital broadcasting signals. In IEEE 21st international symposium on personal indoor and mobile radio communications (pp. 1060–1065).

  31. Jameson, B. (2010) detection of behind-the-wall targets with adaptive UWB OFDM radar: Experimental approach. In IEEE radar conference (pp. 945–950).

  32. Dawid, A. P. (1981). Some matrix-variate distribution theory: Notational considerations and a Bayesian application. Biometrika, 68, 265–274. https://doi.org/10.1093/biomet/68.1.265.

    Article  MathSciNet  MATH  Google Scholar 

  33. Nezamabadi, M., Moniri, M. R. (2017). GLR detector in gaussian interference environment with auto-regressive spectrum in multi-channel of high-frequency surface wave radar. In IEEE microwaves, radar and remote sensing symposium (MRRS), Ukraine

  34. Yang, Q., Li, S., & Cao, Y. (2018). An IMM-GLR approach for marine gas turbine gas path fault diagnosis. Mathematical Problems in Engineering. https://doi.org/10.1155/2018/1918350.

    MathSciNet  Google Scholar 

  35. Urbano, S., Chaumette, E., Goupil, P., & Tourneret, J.-Y. (2018). Aircraft vibration detection and diagnosis for predictive maintenance using a GLR Test. Predictive Maintenance Using a GLR Test, 51(24), 1030–1036.

    Google Scholar 

  36. Kafshgari, S., & Mohseni, R. (2015). GLR detection of fluctuating targets in OFDM radars. Advances in Computer Science and Engineering, 14(1), 35–57.

    Article  Google Scholar 

  37. Kafshgari, S., & Mohseni, R. (2013). Fluctuating target detection in presence of non-Gaussian clutter in OFDM radars. International Journal of Electronics and Communications (AEU), 67, 885–893.

    Article  Google Scholar 

  38. Khosravi, M. R. (2018). Efficient routing for dense UWSNs with high-speed mobile nodes using spherical divisions. Journal of Supercomputing, 74(2), 696–716.

    Article  Google Scholar 

  39. Khosravi, M. R. (2018). Distributed random cooperation for VBF-based routing in high-speed dense underwater acoustic sensor networks. Journal of Supercomputing, 74(11), 6184–6200.

    Article  Google Scholar 

  40. Gameiro, A., Daniel Castanheira, J., Sanson, P., & Monteiro, P. (2018). Research challenges, trends and applications for future joint radar communications systems. Wireless Personal Communications, 100(1), 81–96.

    Article  Google Scholar 

  41. Guan, S., Bridge, J. A., Li, C., & DeMello, N. J. (2019). Smart radar sensor network for bridge displacement monitoring. Journal of Bridge Engineering, 24(1), 04018102.

    Article  Google Scholar 

  42. Yao, Y., & Wu, L. (2018). Cognitive waveform design for radar-communication transceiver networks. Journal of Advanced Transportation, 2018, Article ID 182927.

    Article  Google Scholar 

  43. Karimi, V. (2018). OFDM waveform design based on mutual information for cognitive radar applications. Journal of Supercomputing. https://doi.org/10.1007/s11227-018-2648-3.

    Google Scholar 

  44. Liang, J., Hu, Y., Liu, H., & Mao, C. (2016). Fuzzy clustering in radar sensor networks for target detection. Ad Hoc Networks. https://doi.org/10.1016/j.adhoc.2016.09.008.

    Google Scholar 

  45. Liang, J., & Mao, C. (2016). HRRP recognition in radar sensor network. Ad Hoc Networks. https://doi.org/10.1016/j.adhoc.2016.09.001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sadegh Samadi or Mohammad Reza Khosravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafshgari, S., Mohseni, R., Samadi, S. et al. High-Performance GLR Detector for Moving Target Detection in OFDM Radar-Based Vehicular Networks. Wireless Pers Commun 108, 751–768 (2019). https://doi.org/10.1007/s11277-019-06427-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06427-6

Keywords