Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cooperative Communication in Physical Layer Security: Technologies and Challenges

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cooperative communication utilizes node cooperation for enhancing the diversity gains during secure communication against eavesdropping and jamming which are the common threats to information security in wireless networks. This paper aims to provide the most recent survey on cooperative technologies to ensure a confidential link between legitimate nodes. First, an overview of cooperative relaying, jamming and hybrid methods used in cooperative communication has been presented. Further for each method, different techniques are categorized based on system model comparison, distinctly elaborating their performance and applications. Finally, future research directions are envisioned at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. “More than 50 billion connected devices”, Ericsson, white paper, (2011). Available at: http://www.akos-rs.si/files/Telekomunikacije/Digitalna_agenda/Internetni_protokol_Ipv6/More-than-50-billion-connected-devices.pdf. Accessed Feb 2011.

  2. Orojloo, H., & Azgomi, M. A. (2017). A method for evaluating the consequence propogation of security attacks in cyber-physical systems. Future Generation Computer Systems, 67, 57–71.

    Article  Google Scholar 

  3. Shiu, et al. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 18(2), 66–74.

    Article  Google Scholar 

  4. Unprecedented cyberattack hits 200,000 in at least 150 countries, and the threat is escalating (2017), CNBC.

  5. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1367.

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, K. J. R., Sadek, A. K., Su, W. F., & Kwasinski, A. (2009). Cooperative communications and networking. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  7. Wang, H.-M., & Xia, X.-G. (2015). Enhancing wireless secrecy via cooperation: Signal design and optimization. IEEE Communications Magazine, 53(12), 47–53.

    Article  Google Scholar 

  8. Rohokale, V. M., Prasad, N. R., & Prasad, R. (2012). Cooperative wireless communications and physical layer security: State-of-the-art. Journal of Cyber Security and Mobility, 1, 227–249.

    Google Scholar 

  9. Rodríguez, L. J., Tran, N. H., Duong, T. Q., Le-Ngoc, T., Elkashlan, M., & Shetty, S. (2015). Physical layer security in wireless cooperative relay networks: State of the art and beyond. IEEE Communications Magazine, 53(12), 32–39.

    Article  Google Scholar 

  10. Bassily, R., et al. (2013). Cooperative security at the physical layer: A summary of recent advances. IEEE Signal Processing Magazine, 30(5), 16–28.

    Article  Google Scholar 

  11. Mukherjee, S. A. A., Fakoorian, J. H., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1550–1573.

    Article  Google Scholar 

  12. Aylin Yener and Sennur Ulukus. (2015). Wireless physical-layer security: Lessons learned from information theory. Proceedings of the IEEE, 103(10), 1814–1825.

    Article  Google Scholar 

  13. Atallah M, Kaddoum G, Kong L (2015) A survey on cooperative jamming applied to physical layer security. IEEE ICUWB-2015, 1–5. https://doi.org/10.1109/icuwb.2015.7324413.

  14. Katiyar, H., Rastogi, A., & Aggarwal, R. (2011). Cooperative communication: A review. IETE Technical Review, 28(5), 409–417.

    Article  Google Scholar 

  15. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell System Technical Journal, 28(4), 656–715.

    Article  MathSciNet  MATH  Google Scholar 

  16. Trappe, W. (2015). The challenges facing physical layer security. IEEE Communications Magazine, 53(6), 16–20.

    Article  Google Scholar 

  17. Liu, Y., Chen, H.-H., & Wang, L. (2017). Physical layer security for next generation wireless networks: Theories, technologies and challenges. IEEE Communications Surveys and Tutorials, 19(1), 347–376.

    Article  Google Scholar 

  18. Hancke, G., Mitrokotsa, A., Safavi-Naini, R., & Sauveron, D. (2016). Special issue on recent advances in physical-layer security. Computer Networks, 109(1), 1–3.

    Article  Google Scholar 

  19. Lianbing, Z. (2015). Research on physical layer security of cognitive radio based on cooperative communication. In IEEE sixth international conference (ISDEA) (pp. 661–664). https://doi.org/10.1109/isdea.2015.170

  20. Renyong, W., Wenru, W., & Renfa, L. (2017). Multiple relay selection based on game theory in cooperative cognitive radio networks. Chinese Journal of Electronics, 26(3), 624–633.

    Article  Google Scholar 

  21. Nguyen, M.-N., et al. (2017). Secure cooperative half-duplex cognitive radio networks with K-th best relay selection. IEEE Access, 5, 6678–6687.

    Article  Google Scholar 

  22. Fang, H., Li, X., & Choo, K.-K. R. (2017). Stackelberg game based relay selection for physical layer security and energy efficiency enhancement in cognitive radio networks. Applied Mathematics and Computation, 296, 153–167.

    Article  MathSciNet  MATH  Google Scholar 

  23. Narmanlioglu, O., Kizilirmak, R. C., Miramirkhani, F., & Uysal, M. (2017). Cooperative visible light communications with full-duplex relaying. IEEE Photonics Journal. https://doi.org/10.1109/JPHOT.2017.2708746.

    Article  Google Scholar 

  24. Nair, A. K., Asmi, S., & Gopakumar, A. (2016). Analysis of physical layer security via co-operative communication in internet of things. Procedia Technology, 24, 896–903.

    Article  Google Scholar 

  25. Rohokale, V. M., Prasad, N. R., & Prasad, R. (2012). Cooperative jamming for physical layer security in wireless sensor networks. In IEEE WPMC 15th international symposium.

  26. Nicholas Laneman, J., Tse, David N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  27. Louie, R. H. Y., Li, Y., & Vucetic, B. (2010). Practical physical layer network coding for two-way relay channels: Performance analysis and comparison. IEEE Transactions on Wireless Communications, 9(2), 764–777.

    Article  Google Scholar 

  28. Liu, C., Yang, N., Yuan, J., & Malaney, R. (2015). Location-based secure transmission for wiretap channels. IEEE Journal on Selected Areas in Communicaton, 33(7), 1458–1470.

    Article  Google Scholar 

  29. Wang, L., Cai, Y., Zou, Y., Yang, W., & Hanzo, L. (2016). Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays. IEEE Transactions on Vehicular Technology, 65(8), 6259–6274.

    Article  Google Scholar 

  30. Wang, L., Elkashlan, M., Huang, J., Tran, N. H., & Duong, T. Q. (2014). Secure transmission with optimal power allocation in untrusted relay networks. IEEE Wireless Communications Letters, 3(3), 289–292.

    Article  Google Scholar 

  31. Zheng, T.-X., Wang, H.-M., Liu, F., & Lee, M. H. (2015). Outage constrained secrecy throughput maximization for df relay networks. IEEE Transactions on Communications, 63(5), 1741–1755.

    Article  Google Scholar 

  32. Parsaeefard, S., & Le-Ngoc, T. (2015). Improving wireless secrecy rate via full-duplex relay-assisted protocols. IEEE Transactions on Information Forensics and Security, 10(10), 2095–2107.

    Article  Google Scholar 

  33. Liu, Y., et al. (2012). A practical compress-and-forward relay scheme based on superposition coding. In IEEE 14th international conference on communication technology. https://doi.org/10.1109/icct.2012.6511396

  34. Li, C., Wang, Y., Dong, F., & Yang, D. (2009). Performance analysis for coded cooperation protocol in fixed relay system. In IEEE youth conference on information, computing and telecommunication (pp. 182–185).

  35. Lai, L., & El Gamal, H. (2008). The relay-eavesdropper channel: cooperation for secrecy. IEEE Transactions on Information Theory, 54(9), 4005–4019.

    Article  MathSciNet  MATH  Google Scholar 

  36. Khafagy, M., Ismail, A., Alouini, M.-S., & A¨ıssa, S. (2013). On the outage performance of full-duplex selective decode-and-forward relaying. IEEE Communications Letters, 17(6), 1180–1183.

    Article  Google Scholar 

  37. Vahidian, S., Hatamnia, S., & Champagne, B. (2018). On the security analysis of a cooperative incremental relaying protocol in the presence of an active eavesdropper. IEEE Transactions on Information Forensics and Security. arXiv:1807.11621v1[cs.NI],1-13.

  38. Ikki, S. S., & Ahmed, M. H. (2011). Performance analysis of incremental-relaying cooperative-diversity networks over Rayleigh fading channels. IET Communications, 5(3), 337–349. https://doi.org/10.1049/iet-com.2010.0157.

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiao, H., & Ouyang, S. (2015). Power allocation for a hybrid decode–amplify–forward cooperative communication system with two source-destination pairs under outage probability constraint. IEEE Systems Journal, 9(3), 797–804.

    Article  Google Scholar 

  40. Ding, Z., Chin, W. H., & Leung, K. K. (2008). Distributed beamforming and power allocation for cooperative networks. IEEE Transactions on Wireless Communications, 7(5), 1817–1822.

    Article  Google Scholar 

  41. Chin, W. H., & Sivagami, A. (2008). Transmit beamforming in cooperative networks. In IEEE vehicular technology conference (pp. 1365–1368).

  42. Yan, S., & Malaney, R. (2016). Location-based beamforming for enhancing secrecy in Rician wiretap channels. IEEE Transactions on Wireless Communications, 15(4), 2780–2791.

    Article  Google Scholar 

  43. Mo, J., Tao, M., Liu, Y., & Wang, R. (2014). Secure beamforming for MIMO two-way communications with an untrusted relay. IEEE Transactions on Signal Processing, 62(9), 2185–2199.

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, X., Zhang, Y. D., & Amin, M. G. (2011). Joint optimization of source power allocation and relay beamforming in multiuser cooperative wireless networks. Mobile Networks and Applications, 16, 562–575. https://doi.org/10.1007/s11036-010-0245-7.

    Article  Google Scholar 

  45. Ahn, S., Jung, S., Lee, W., Sung, T.-K., & Park, J.-G. (2016). Enhancing physical-layer security in MISO wiretap channel with pilot-assisted channel estimation: Beamforming design for pilot jamming. In: IEEE ICSPCS, 10th international conference. https://doi.org/10.1109/icspcs.2016.7843333

  46. Thuy, T. T., Tuan, N. N., An, L. T. H., Gély, A. (2016). DC programming and DCA for enhancing physical layer security via relay beamforming strategies. Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science, 9622, 640–650.

  47. Vahidian, S., Aïssa, S., & Hatamnia, S. (2015). Relay selection for security-constrained cooperative communication in the presence of eavesdropper’s overhearing and interference. IEEE Wireless Communications Letters, 4(6), 577–580.

    Article  Google Scholar 

  48. Esmaeili, M., & Mohammadi, A. (2018). A reliable relay selection scheme for SSK modulation in cooperative communication systems. Wireless Networks, 24(6), 1927–1937.

    Article  Google Scholar 

  49. Ke, G., Qiang, G., Li, F., & Huagang, X. (2017). Relay selection in cooperative communication systems over continuous time-varying fading channel. Chinese Journal of Aeronautics, 30(1), 391–398.

    Article  Google Scholar 

  50. Ibrahim, D. H., Hassan, E. S., & El-Dolil, S. A. (2015). Relay and Jammer Selection scheme for improving physical layer security in two way cooperative networks. Computer and Security, 50, 47–59.

    Article  Google Scholar 

  51. Kundu, C., Telex, M. N. N., & Dobre, O. A. (2016). Relay selection to improve secrecy in cooperative threshold decode-and-forward relaying. In IEEE global communication conference (GLOBECOM).

  52. Liang, X., Chen, M., Balasingham, I., & Leung, V. C. M. (2013). Cooperative communications with relay selection for wireless networks: Design issues and applications. Wireless Communications and Mobile Computing, 13(8), 745–759.

    Article  Google Scholar 

  53. Cumanan, K., et al. (2017). Physical layer security jamming: theoretical limits and practical designs in wireless networks. IEEE Journals and Magazines, 5, 3603–3611.

    Google Scholar 

  54. Yang, J., Kim, I.-M., & Kim, D. I. (2014). Joint design of optimal cooperative jamming and power allocation for linear precoding. IEEE Transactions on Communications, 62(9), 3285–3298.

    Article  Google Scholar 

  55. Tourki, K., & Hasna, M. O. (2016). A collaboration incentive exploiting the primary-secondary systems cross interference for PHY security enhancement. IEEE Journal of Selected Topics in Signal Processing, 10(8), 1346–1358.

    Article  Google Scholar 

  56. Mu, P., Hu, X., Wang, B., & Li, Z. (2015). Secrecy rate maximization with uncoordinated cooperative jamming by single-antenna helpers under secrecy outage probability constraint. IEEE Communications Letters, 19(12), 2174–2177.

    Article  Google Scholar 

  57. Tran, T. T., Thi, H. A. L., & Dinh, T. P. (2017). DC programming and DCA for enhancing physical layer security via cooperative jamming. Computers & Operations Research, 87, 235–244.

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, J., Salari, S., Kim, I.-M., Kim, D. I., Kim, S., & Lim, K. (2016). Asymptotically optimal cooperative jamming for physical layer security. Journal of Communications and Networks, 18(1), 84–94.

    Article  Google Scholar 

  59. Kolokotronics, N., Fytrakis, K., Katsiotis, A., & Kalouptsidis, N. (2015). A cooperative jamming protocol for physical layer security in wireless networks. In IEEE ICASSP (pp. 5803–5807).

  60. Lv, L., Chen, J., Yang, L., & Kuo, Y. (2017). Improving physical layer security in untrusted relay networks: cooperative jamming and power allocation. IET Journals, 11(3), 393–399.

    Google Scholar 

  61. Tang, L., Chen, H., & Li, Q. (2015). Social tie based cooperative jamming for physical layer security. IEEE Communications Letters, 19(10), 1790–1793.

    Article  Google Scholar 

  62. Chu, Z., Cumanan, K., Ding, Z., Johnston, M., & Le Goff, S. Y. (2015). Secrecy rate optimizations for a MIMO secrecy channel with a cooperative jammer. IEEE Transactions on Vehicular Technology, 64(5), 1833–1847.

    Article  Google Scholar 

  63. Liu, J., Liu, Z., Zeng, Y., & Ma, J. (2016). Cooperative jammer placement for physical layer security enhancement. IEEE Networks, 30(6), 56–61.

    Article  Google Scholar 

  64. Lee, J. H., & Choi, W. (2014). Multiuser diversity for secrecy communications using opportunistic jammer selection: Secure DoF and Jammer Scaling Law. IEEE Transactions on Signal Processing, 62(4), 828–839.

    Article  MathSciNet  MATH  Google Scholar 

  65. Wang, C., Wang, H.-M., Xia, X.-G., & Liu, C. (2015). Uncoordinated jammer selection for securing SIMOME wiretap channels: A stochastic geometry approach. IEEE Transactions on Wireless Communications, 14(5), 2596–2612.

    Article  Google Scholar 

  66. Deng, H., Wang, H.-M., Guo, W., & Wang, W. (2015). Secrecy transmission with a helper: To relay or to jam. IEEE Transactions on Information Forensics and Security, 10(2), 293–307.

    Article  Google Scholar 

  67. Wang, C., Wang, H.-M., & Xia, X.-G. (2015). Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks. IEEE Transactions on Wireless Communications, 14(2), 589–605.

    Article  MathSciNet  Google Scholar 

  68. Lin, H., Wen, H., Bin, W., Tang, J., & Pan, F. (2017). Adaptive secure transmission for physical layer security in coopertive wireless networks. IEEE Communications Letters, 21(3), 524–527.

    Article  Google Scholar 

  69. Lin, H., Wen, H., Bin, W., Tang, J., & Pan, F. (2016). Adaptive base station cooperation for physical layer security in two-cell wireless networks. IEEE Access, 4, 5607–5623.

    Article  Google Scholar 

  70. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonika Pahuja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahuja, S., Jindal, P. Cooperative Communication in Physical Layer Security: Technologies and Challenges. Wireless Pers Commun 108, 811–837 (2019). https://doi.org/10.1007/s11277-019-06430-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06430-x

Keywords