Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

WSN Strategies Based on Sensors, Deployment, Sensing Models, Coverage and Energy Efficiency: Review, Approaches and Open Issues

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are growing rapidly in various fields of commerce, medicine, industrial, agriculture, research, meteorology, etc. that eases complicated tasks. The most active and recent research areas in wireless sensor networks are deployment strategies, energy efficiency and coverage. Besides energy harvesting, network lifetime of the sensors can be increased by decreasing the consumption of energy. This becomes the most challenging areas of utilizing wireless sensor network in practical applications. Deployment in WSNs directly influence the performance of the networks. The usage of sensor nodes in large quantity in the random deployment improves concerns in reliability and scalability. Coverage in wireless sensor networks measures how long the physical space is monitored by the sensors. Barrier coverage is an issue in wireless sensor networks, which is used for security application aims in intruder detection of the protected area. Several ongoing research work focuses on energy efficiency and coverage in wireless sensor networks and numerous schemes, algorithms, methods and architectures have been proposed. Still, there is no comprehensive solution applicable universally. Hence,this work provides with a state-of-the-art of the classification of wireless sensor networks based on different dimensions, such as, types of sensors, deployment strategies, sensing models, coverage and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohamed, S. M., Hamza, H. S., & Saroit, I. A. (2017). Coverage in mobile wireless sensor networks (M-WSN): A survey. Computer Communications, 110, 133–150.

    Article  Google Scholar 

  2. Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.

    Article  Google Scholar 

  3. Mostafaei, H., Chowdhurry, M. U., & Obaidat, M. S. (2018). Border surveillance with WSN systems in a distributed manner. IEEE Systems Journal, 12(4), 3703–3712.

    Article  Google Scholar 

  4. Raghavendra, C. S., Sivalingam, K. M., & Znati, T. (2004). Wireless sensor networks. Berlin: Springer.

    Book  MATH  Google Scholar 

  5. Singh, P., Gupta, O. P., & Saini, S. (2017). A brief research study of wireless sensor network. Advances in Computational Sciences and Technology, 10(5), 733–739.

    Google Scholar 

  6. Emary, I. M. M. E., & Ramakrishnan, S. (2014). Wireless Sensor networks: From theory to applications. Boca Raton: CRC Press.

    Google Scholar 

  7. Hanh, N. T., Binh, H. T. T., Hoai, N. X., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences. https://doi.org/10.1016/j.ins.2019.02.059.

  8. Sorbelli, F. B., Das, S. K., Pinotti, C. M., & Silvestri, S. (2018). Range based algorithms for precise localization of terrestrial objects using a drone. Pervasive and Mobile Computing, 48, 20–42.

    Article  Google Scholar 

  9. Ahmad, A., Javaid, N., Imran, M., Guizani, M., & Alhamed, A. A. (2016). An advanced energy consumption model for terrestrial wireless sensor networks. International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 790–793).

  10. Wahid, A., & Kim, D. (2012). An energy efficient localization-free routing protocol for underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 8(4), 1–11.

    Article  Google Scholar 

  11. Mahmood, S., Nasir, H., Tariq, S., Ashraf, H., Pervaiz, M., Khan, Z. A., et al. (2014). Forwarding nodes constraint based DBR (CDBR) and EEDBR (CEEDBR) in underwater WSNs. Procedia Computer Science, 34, 228–235.

    Article  Google Scholar 

  12. Yan, H., Shi, Z. J., & Cui, J. H. (2008). DBR: Depth-based routing for underwater sensor networks. Lecture Notes in Computer Science (pp. 72–86).

  13. Roy, A., & Sarma, N. (2018). Effects of various factors on performance of MAC protocols for underwater wireless sensor networks. Materials Today: Proceedings, 5(1), 2263–2274.

    Google Scholar 

  14. Khan, A. H., Jafri, M. R., Javaid, N., Khan, Z. A., Qasim, U., & Imran, M. (2015). DSM: Dynamic sink mobility equipped DBR for underwater WSNs. Procedia Computer Science, 52, 560–567.

    Article  Google Scholar 

  15. Shin, W. Y., Lucani, D. E., Medard, M., Stojanovic, M., & Tarokh, V. (2013). On the effects of frequency scaling over capacity scaling in underwater networks—Part II: Dense network model. Wireless Personal Communications, 71(3), 1701–1719.

    Article  Google Scholar 

  16. Zhang, S., Li, D., & Chen, J. (2013). A link-state based adaptive feedback routing for underwater acoustic sensor networks. IEEE Sensors Journal, 13(11), 4402–4412.

    Article  Google Scholar 

  17. Tran, K. T. M., & Oh, S. H. (2014). UWSNs: A round-based clustering scheme for data redundancy resolve. International Journal of Distributed Sensor Networks, 10(4), 1–6.

    Article  Google Scholar 

  18. Javaid, N., Jafri, M. R., Khan, Z. A., Qasim, U., Alghamdi, T. A., & Ali, M. (2014). iAMCTD: Improved adaptive mobility of courier nodes in threshold-optimized DBR protocol for underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 10(11), 1–12.

    Article  Google Scholar 

  19. Bennis, I., Fouchal, H., Piamrat, K., & Ayaida, M. (2018). Efficient queuing scheme through cross layer approach for multimedia transmission over WSNs. Computer Networks, 134, 272–282.

    Article  Google Scholar 

  20. Youssif, A. A. A., Ghalwash, A. Z., & Abd El Kader, M. E. E. D. (2015). ACWSN: An adaptive cross layer framework for videotransmission over wireless sensor networks. WirelessNetworks, 21(8), 2693–2710.

  21. Abd El Kader, M. E. E. D., Youssif, A. A. A., & Ghalwash, A. Z. (2016). Energy aware and adaptive cross-layer scheme for video transmission over wireless sensor networks. IEEE Sensors Journal, 16(21), 7792–7802.

    Article  Google Scholar 

  22. Aghdasi, H., Abbaspour, M., Moghadam, M., & Samei, Y. (2008). An energy-efficient and high-quality video transmission architecture in wireless video-based sensor networks. Sensors, 8(8), 4529–4559.

    Article  Google Scholar 

  23. Bradai, A., Singh, K., Rachedi, A., & Ahmed, T. (2015). EMCOS: Energy-efficient mechanism for multimedia streaming over cognitive radio sensor networks. Pervasive and Mobile Computing, 22, 16–32.

    Article  Google Scholar 

  24. Msolli, A., Helali, A., & Maaref, H. (2018). New security approach in real-time wireless multimedia sensor networks. Computers & Electrical Engineering, 72, 910–925.

    Article  Google Scholar 

  25. Ahmed, A. A. (2017). A real-time routing protocol with adaptive traffic shaping for multimedia streaming over next-generation of wireless multimedia sensor networks. Pervasive and Mobile Computing, 40, 495–511.

    Article  Google Scholar 

  26. Sarvi, B., Rabiee, H. R., & Mizanian, K. (2017). An adaptive cross-layer error control protocol for wireless multimedia sensor networks. Ad Hoc Networks, 56, 173–185.

    Article  Google Scholar 

  27. Singh, R., & Verma, A. K. (2017). Efficient image transfer over WSN using cross layer architecture. Optik - International Journal for Light and Electron Optics, 130, 499–504.

    Article  Google Scholar 

  28. Zrelli, A., & Ezzedine, T. (2018). Design of optical and wireless sensors for underground mining monitoring system. Optik, 170, 376–383.

    Article  Google Scholar 

  29. Prakash, S.K.L.V.S., & Niranjan, P. (2014). Movement minimization of randomly deployed mobile nodes for complete coverage and connectivity. In IEEE international conference on advanced communications, control and computing technologies (pp. 643–648).

  30. More, A., & Raisinghani, V. (2017). A survey on energy efficient coverage protocols in wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 29(4), 428–448.

    Article  Google Scholar 

  31. Wang, Y. C., & Huang, J. W. (2018). Efficient dispatch of mobile sensors in a WSN with wireless chargers. Pervasive and Mobile Computing, 51, 104–120.

    Article  Google Scholar 

  32. Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012). Mobile wireless sensor networks overview. International Journal of Computer, Communications and Networks, 2(1), 17–22.

    Google Scholar 

  33. Wang, Y. C., Wu, F. J., & Tseng, Y. C. (2012). Mobility management algorithms and applications for mobile sensor networks. Wireless Communications and Mobile Computing, 12(1), 7–21.

    Article  Google Scholar 

  34. Mei, Y., Lu, Y. H., Hu, Y. C., & Lee, C. S. G. (2006). Deployment of mobile robots with energy and timing constraints. IEEE Transactions on Robotics, 22(3), 507–522.

    Article  Google Scholar 

  35. Zhou, Z. B., Du, C., Shu, L., Hancke, G., Niu, J., & Ning, H. (2016). An energy-balanced heuristic for mobile sink scheduling in hybrid WSNs. IEEE Transactions on Industrial Informatics, 12(1), 28–40.

    Article  Google Scholar 

  36. Akbar, N. K., Isa, F. N. M. M., Abidin, H. Z., & Yassin, A. I. (2017). Comparison study on mobile sensor node redeployment algorithms. In IEEE 13th Malaysia international conference on communications (MICC) (pp. 29–34).

  37. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  38. Al-Karaki, J. N., & Gawanmeh, A. (2017). The optimal deployment, coverage, and connectivity problems in wireless sensor networks: Revisited. IEEE Access, 5, 18051–18065.

    Article  Google Scholar 

  39. Guo, X., Zhao, C., Yang, X., & Sun, C. (2011). A deterministic sensor node deployment method with target coverage and node connectivity. Lecture Notes in Computer Science, 7003, 201–207.

    Article  Google Scholar 

  40. Vergin Raja Sarobin M., & Ganesan R. (2018). Deterministic node deployment for connected target coverage problem in heterogeneous wireless sensor networks for monitoring wind farm. In S. SenGupta, A. Zobaa, K. Sherpa, A. Bhoi (Eds.) Advances in smart grid and renewable energy. Lecture notes in electrical engineering (pp. 683–694). Singapore: Springer.

  41. Mulligan, R., & Ammari, M. H. (2010). Coverage in wireless sensor networks: A survey. Network Protocols Algorithms, 2(2), 27–53.

    Google Scholar 

  42. Soreanu, P., & Volkovich, Z. (2009). New sensing model for wireless sensor networks. International Journal on Advances in Networks and Services, 2(4), 261–272.

    Google Scholar 

  43. Abdollahzadeh, S., & Navimipour, N. (2016). Deployment strategies in the wireless sensor network: A comprehensive review. Computer Communications, 91–92, 1–16.

    Article  Google Scholar 

  44. Kumar, S., & Lobiyal, D. K. (2013). Sensing coverage prediction for wireless sensor networks in shadowed and multipath environment. The Scientific World Journal (pp. 1–11).

  45. Wang, Y., Zhang, Y., Liu, J., & Bhandari, R. (2014). Coverage, connectivity, and deployment in wireless sensor networks. Recent development in wireless sensor and ad-hoc networks (pp. 25–44).

  46. Hossain, A., Biswas, P. K., & Chakrabarti, S. (2008). Sensing models and its impact on network coverage in wireless sensor network.IEEE region 10 colloquium and the third ICIIS, Kharagpur (pp. 8–10).

  47. Liu, B. H., Otis, B., Challa, S., Axon, P., Chou, C. T., & Jha, S. K. (2008). The impact of fading and shadowing on the network performance of wireless sensor networks. International Journal of Sensor Networks, 3(4), 211–223.

    Article  Google Scholar 

  48. Briff, P., Lutenberg, A., Vega, L. R., Vargas, F., & Patwary, M. (2014). A primer on energy-efficient synchronization of WSN nodes over correlated Rayleigh fading channels. IEEE Wireless Communications Letters, 3(1), 38–41.

    Article  Google Scholar 

  49. Puccinelli, D., & Haenggi, M. (2006). Multipath fading in wireless sensor networks: Measurements and interpretation. IWCMC’06 (pp. 3–6).

  50. Zeng, F., Li, C., Zhen, A., Sun, J., & Liu, Z. (2017). Study of connectivity probability in wireless ad hoc networks under Nakagami-m fading channel. IEEE (pp. 931–933).

  51. Abuelenin, S. M. (2018). On the similarity between Nakagami-m fading distribution and the Gaussian ensembles of random matrix theory. https://arxiv.org/ftp/arxiv/papers/1803/1803.08688.pdf.

  52. Cardei, M., MacCallum, D., Cheng, M. X., Min, M., Jia, X., Li, D., et al. (2002). Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks, 03(04), 213–229.

    Article  Google Scholar 

  53. Hussein, A. A., Rahman, T. A., & Leow, C. Y. (2015). Performance evaluation of localization accuracy for a log-normal shadow fading wireless sensor network under physical barrier attacks. Sensors, 15(12), 30545–30570.

    Article  Google Scholar 

  54. Rai, N., & Daruwala, R.D. (2017). Effect of probabilistic sensing models in a deterministically deployed wireless sensor network. Proceeding of the international conference, TENCON (pp. 1352–1355). IEEE.

  55. Aeron, U., & Kumar, H. (2013). Coverage analysis of various wireless sensor network deployment strategies. International Journal of Modern Engineering Research (IJMER), 3(2), 955–961.

    Google Scholar 

  56. Qing, W. X., & Shu-qin, Z. (2009). Research on efficient coverage problem of node in wireless sensor networks.International conference on industrial mechatronics and automation (pp. 9–13). IEEE.

  57. Wu, T. M. (2006). Generation of Nakagami-m Fading Channels. In IEEE 63rd vehicular technology conference (pp. 2787–2979). IEEE.

  58. Al-Turjman, F. M., Hassanein, H. S., & Ibnkahla, M. (2013). Quantifying connectivity in wireless sensor networks with grid-based deployments. Journal of Network and Computer Applications, 36, 368–377.

    Article  Google Scholar 

  59. Tiegang, F., Guifa, T., & Limin, H. (2014). Deployment strategy of WSN based on minimizing cost per unit area. Computer Communications, 38, 26–35.

    Article  Google Scholar 

  60. Restuccia, F., Anastasi, G., Conti, M., & Das, S. K. (2014). Analysis and optimization of a protocol for mobile element discovery in sensor networks. IEEE Transactions on Mobile Computing, 13(9), 1942–1954.

    Article  Google Scholar 

  61. Tao, D., & Wu, T. Y. (2015). A survey on barrier coverage problem in directional sensor networks. IEEE Sensors Journal, 15(2), 876–885.

    Article  Google Scholar 

  62. Chen, A., Kumar, S., & Lai, T. (2010). Local barrier coverage in wireless sensor networks. IEEE Transaction on Mobile Computing, 9(4), 491–504.

    Article  Google Scholar 

  63. Liu, C., & Cao, G. (2011). Spatial-temporal coverage optimization in wireless sensor networks. IEEE Transactions on Mobile Computing, 10(4), 465–478.

    Article  Google Scholar 

  64. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks Journal, 51(4), 921–960.

    Article  Google Scholar 

  65. Cardei, M., & Du, D. Z. (2005). Improving Wireless sensor network lifetime through power aware organization wireless networks. ACM Wireless Networks, 11(3), 333–340.

    Article  Google Scholar 

  66. Singh, D. P., & Pant, B. (2016). An approach to solve the target coverage problem by efficient deployment and scheduling of sensor nodes in WSN. International Journal of System Assurance Engineering and Management, 8(2), 493–514.

    Article  Google Scholar 

  67. Bai, X., Ding, L., Teng, J., Chellappan, S., Xu, C., & Xuan, D. (2009). Directed coverage in wireless sensor networks: Concept and quality. In IEEE 6th international conference on mobile adhoc and sensor systems (pp. 476–485).

  68. Kumar, S., Lai, T. H., & Arora, A. (2005). Barrier coverage with wireless sensors. In The 11th annual international conference on mobile computing and networking (pp. 284–298).

  69. Wang, Z. (2014). Barrier coverage in wireless sensor networks. PhD diss.. University of Tennessee.

  70. Li, L., Zhang, B., Shen, X., Zheng, J., & Yao, Z. (2011). A study on the weak barrier coverage problem in wireless sensor networks. Computer Networks, 55(3), 711–721.

    Article  MATH  Google Scholar 

  71. Wang, Z., Liao, J., Cao, Q., Qi, H., & Wang, Z. (2014). Achieving k-barrier coverage in hybrid directional sensor networks. IEEE Transactions on Mobile Computing, 13(7), 1443–1455.

    Article  Google Scholar 

  72. Li, X., Wan, P., Wang, Y., & Frieder, O. (2003). Coverage problems in wireless ad-hoc sensor networks. IEEE Transactions for Computers, 52, 753–763.

    Article  Google Scholar 

  73. Meguerdichian, S., Koushanfar, F., Potkonjak, M., & Srivastava, M. (2001). Coverage problems in wireless ad-hoc sensor networks. In The 12th annual joint conference of the IEEE computer and communications societies INFOCOM 2001 (Vol. 3, pp. 1380–1387).

  74. Chen, A., Kumar, S., & Lai, T. H. (2007). Designing localized algorithms for barrier coverage. In The 13th annual acm international conference on mobile computing and networking (pp. 63–74).

  75. Liu, B., Dousse, O., Wang, J., & Saipulla, A. (2008). Strong barrier coverage of wireless sensor networks. In: The 9th ACM international symposium on mobile ad hoc networking and computing (pp. 411–420).

  76. Ghosh, A., & Das, S. K. (2008). Coverage and connectivity issues in wireless sensor networks: A survey. Pervasive and Mobile Computing, 4(3), 303–334.

    Article  Google Scholar 

  77. Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.

    Article  Google Scholar 

  78. Wang, B., Lim, H. B., & Ma, D. (2009). A survey of movement strategies for improving network coverage in wireless sensor networks. Computer Communications, 32(13–14), 1427–1436.

    Article  Google Scholar 

  79. Benatia, M. A., Sahnoun, M., Baudry, D., Louis, A., El-Hami, A., & Mazari, B. (2017). Multi-objective WSN deployment using genetic algorithms under cost, coverage, and connectivity constraints. Wireless Personal Communications, 94(4), 2739–2768.

    Article  Google Scholar 

  80. Fan, S. J. G. (2010). Coverage problem in wireless sensor network: A survey. Journal of Networks, 5(9), 1033–1040.

    Article  Google Scholar 

  81. Rault, T. (2015). Energy-efficiency in wireless sensor networks. Universite de Technologie de Compiegne.

  82. Cui, S., Goldsmith, A., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4, 2349–2360.

    Article  Google Scholar 

  83. Nosratinia, A., Hunter, T., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42, 74–80.

    Article  Google Scholar 

  84. Jung, J. W., Wang, W., & Ingram, M. A. (2011). Cooperative transmission range extension for duty cycle-limited wireless sensor networks. In International conference on wireless communication (pp. 1–5). Information Theory and Aerospace and Electronic Systems Technology: Vehicular Technology.

  85. Jayaweera, S. (2006). Virtual MIMO-based cooperative communication for energy constrained wireless sensor networks. IEEE Transactions on Wireless Communications, 5, 984–989.

    Article  Google Scholar 

  86. Correia, L. H., Macedo, D. F., Santos, A. L. D., Loureiro, A. A., & Nogueira, J. M. S. (2007). Transmission power control techniques for wireless sensor networks. Computer Networks, 51, 4765–4779.

    Article  MATH  Google Scholar 

  87. Chu, X., & Sethu, H. (2012). Cooperative topology control with adaptation for improved lifetime in wireless ad hoc networks. In IEEE INFOCOM (pp. 262–270). FL, USA: Orlando.

  88. Subramanian, A. P., & Das, S. R. (2010). Addressing deafness and hidden terminal problem in directional antenna based wireless multi-hop networks. Wireless Networks, 16, 1557–1567.

    Article  Google Scholar 

  89. Masonta, M., Haddad, Y., Nardis, L. D., Kliks, A., & Holland, O. (2012). Energy efficiency in future wireless networks: Cognitive radio standardization requirements. In IEEE 17th international workshop on computer aided modeling and design of communication links and networks, Barcelone (pp. 31–35).

  90. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14, 70–87.

    Article  Google Scholar 

  91. Naeem, M., Illanko, K., Karmokar, A., Anpalagan, A., & Jaseemuddin, M. (2013). Energy-efficient cognitive radio sensor networks: parametric and convex transformations. Sensors, 13, 11032–11050.

    Article  Google Scholar 

  92. Kimura, N., & Latifi, S. (2005). A survey on data compression in wireless sensor networks. In International conference on information technology: Coding and computing (Vol. 2).

  93. Alberola, R. D. P., & Pesch, D. (2012). Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Ad Hoc Networks, 10(4), 664–679.

    Article  Google Scholar 

  94. Carrano, R. C., Passos, D., Magalhaes, L. C. S., & Albuquerque, C. V. N. (2014). Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 181–194.

    Article  Google Scholar 

  95. Ba, H., Demirkol, I., & Heinzelman, W. (2013). Passive wake-up radios: From devices to applications. Ad Hoc Networks, 11(8), 2605–2621.

    Article  Google Scholar 

  96. Misra, S., Kumar, M. P., & Obaidat, M. S. (2011). Connectivity preserving localized coverage algorithm for area monitoring using wireless sensor networks. Computer Communications, 34, 1484–1496.

    Article  Google Scholar 

  97. Karasabun, E., Korpeoglu, I., & Aykanat, C. (2013). Active node determination for correlated data gathering in wireless sensor networks. Computer Networks, 57, 1124–1138.

    Article  Google Scholar 

  98. Bachir, A., Bechkit, W., Challal, Y., & Bouabdallah, A. (2013). Temperature-aware density optimization for low power wireless sensor networks. IEEE Communications Letters, 17(2), 325–328.

    Article  Google Scholar 

  99. Tutuncuoglu, K., & Yener, A. (2011). Communicating using an energy harvesting transmitter: Optimum policies under energy storage losses. IEEE Transactions on Wireless Communications, 11(3), 1180–1189.

    Article  Google Scholar 

  100. Xie, L., Shi, Y., Hou, Y., & Lou, A. (2013). Wireless power transfer and applications to sensor networks. IEEE Wireless Communications, 20, 140–145.

    Article  Google Scholar 

  101. Gurakan, B., Ozel, O., Yang, J., & Ulukus, S. (2013). Energy cooperation in energy harvesting communications. IEEE Transactions on Communications, 61, 4884–4898.

    Article  Google Scholar 

  102. Hayali, S. A., Rahebi, J., Ucan, O. N., & Bayat, O. (2019). Increasing energy efficiency in wireless sensor networks using GA-ANFIS to choose a cluster head and assess routing and weighted trusts to demodulate attacker nodes. Foundations of Science. https://doi.org/10.1007/s10699-019-09593-9.

  103. Prakash, S., & Saroj, V. (2019). A review of wireless charging nodes in wireless sensor networks. In D. Mishra, X. S. Yang, & A. Unal (Eds.), Data Science and big data analytics. Lecture Notes on data engineering and communications technologies (pp. 177–188). Singapore: Springer.

    Chapter  Google Scholar 

  104. Baroudi, U. (2017). Robot-assisted maintenance of wireless sensor networks using wireless energy transfer. IEEE Sensors Journal, 17(14), 4661–4671.

    Article  Google Scholar 

  105. Monti, G., Dionigi, M., Mongiardo, M., & Perfetti, R. (2017). Optimal design of wireless energy transfer to multiple receivers: Power maximization. IEEE Transactions on Microwave Theory and Techniques, 65(1), 260–269.

    Article  Google Scholar 

  106. Sarikaya, Y., & Ercetin, O. (2017). Self-sufficient receiver with wireless energy transfer in a multi-access network. IEEE Wireless Communications Letters, 6(4), 442–445.

    Article  Google Scholar 

  107. Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff, S. F. (2015). Multi-node wireless energy charging in sensor networks. IEEE/ACM Transactions on Networking, 23(2), 437–450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amutha, J., Sharma, S. & Nagar, J. WSN Strategies Based on Sensors, Deployment, Sensing Models, Coverage and Energy Efficiency: Review, Approaches and Open Issues. Wireless Pers Commun 111, 1089–1115 (2020). https://doi.org/10.1007/s11277-019-06903-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06903-z

Keywords