Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A QoS Aware Resource Placement Approach Inspired on the Behavior of the Social Spider Mating Strategy in the Cloud Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The efficient management of resource sharing plays a crucial role in the cloud execution environment. The constraints such as heterogeneity and dynamic nature of resources need to be addressed towards managing the cloud resources efficiently. The provisioning and scheduling of resources with respect to the tasks depends primarily on the quality of service (QoS) requirements of cloud applications and is a challenging task. For the complete satisfaction of the client, execution of tasks should be as per the QoS parameters; hence a QoS aware cloud framework is required for the purpose mapping of resources efficiently. To handle the complex issue of the resource placement problem, a cloud architectural framework named cloud orchestrated framework for efficient resource placement presents efficient and effective management and placement of resources in the cloud. In this paper, a novel QoS aware resource placement algorithm is proposed based on the social spider mating strategy that manages and places tasks for the computation of resources automatically by optimizing the QoS metrics as a significant feature. The performance of proposed algorithm is evaluated in the cloud and results show that the proposed framework performs better in terms of execution cost, execution time, throughput, and availability, reliability, waiting time, turnaround time, utilization and convergence of cloud resources and utilizes these resources optimally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abrol, P., & Gupta, S. (2018). Social spider foraging-based optimal resource management approach for future cloud. Journal of Supercomputing, 76, 1880–1902.

    Google Scholar 

  2. Al-Ali, R. J., et al. (2004). Analysis and provision of QoS for distributed grid applications. Journal of Grid Computing,2(2), 163–182.

    MATH  Google Scholar 

  3. Gill, S. S., Chana, I., Singh, M., & Buyya, R. (2018). CHOPPER: an intelligent QoS-aware autonomic resource management approach for cloud computing. Cluster Compuing,21, 1203–1241.

    Google Scholar 

  4. Abrol, P., Gupta, S., & Singh, S. (2019) QoS aware social spider cloud web algorithm: Analysis of resource placement approach. In International conference on advancements in computing & management (ICACM-2019), April 13–14, 2019 | Jagannath University, Jaipur, India (pp. 830–836).

  5. Lartigau, J., Xu, X., & Zhan, D. (2015) Artificial bee colony optimized scheduling framework based on resource service availability in cloud manufacturing. In Proceedings of international conference on service science. ICSS, (vol. 2015, pp. 181–186).

  6. Sun, W., Ji, Z., Sun, J., Zhang, N., & Hu, Y. (2015). SAACO: A self adaptive ant colony optimization in cloud computing. In Proceedings—2015 IEEE 5th international conerence on. big data cloud comput. BDCloud 2015 (pp. 148–153).

  7. Gill, S. S., Buyya, R., Chana, I., Singh, M., & Abraham, A. (2018). BULLET: Particle swarm optimization based scheduling technique for provisioned cloud resources. Journal of Network and Systems Management,26(2), 361–400.

    Google Scholar 

  8. Yang, J., Shi, X., Marchese, M., & Liang, Y. (2008). Ant colony optimization method for generalized TSP problem. Progress in Natural Science,18(11), 1417–1422.

    MathSciNet  Google Scholar 

  9. Rood, B., & Lewis, M. (2009). Grid resource availability prediction-based scheduling and task replication. Journal of Grid Computing,7, 479–500.

    Google Scholar 

  10. Wang, N., Yang, Y., Meng, K., Chen, Y., & Ding, H. (2013). A task scheduling algorithm based on QoS and complexity-aware optimization in cloud computing. IET Seminar Digest,6, 2013.

    Google Scholar 

  11. Nou, R., Julià, F., Guitart, J., & Torres, J. (2007). Dynamic resource provisioning for self-adaptive heterogeneous workloads in SMP hosting platforms. In ICE-B 2007Proceedings of 2nd international. confernce on E-business, no. July 2007 (pp. 39–44).

  12. Keller, A., Voss, K., Battré, D., Hovestadt, M., & Kao, O. (2008). Quality assurance of grid service provisioning by risk aware managing of resource failures. In Proceedings of 2008 3rd international conferenc risks and security of the internet systems cris. 2008 (pp. 149–157).

  13. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., & Wilde, M. (2007) Dynamic resource provisioning in grid environments. In TeraGrid.

  14. Aron, R., & Chana, I. (2012). Formal QoS policy based grid resource provisioning framework. Journal of Grid Computing,10(2), 249–264.

    Google Scholar 

  15. Stanik, A., Koerner, M., & Kao, O. (2015). Service-level agreement aggregation for quality of service-aware federated cloud networking. IET Networks,4(5), 264–269.

    Google Scholar 

  16. Grant, A. B., & Eluwole, O. T. (2013). Cloud resource management—Virtual machines competing for limited resources. In IEEE AFRICON Conference (pp. 1–7).

  17. Armbrust, M., Fox, A., & Griffith, R. (2009). Above the clouds: A Berkeley view of cloud computing. Univ. California, Berkeley, Tech. Rep. UCB, pp. 07–013.

  18. Tang, S., Yuan, J., Wang, C., & Li, X. Y. (2014). A framework for Amazon EC2 bidding strategy under SLA constraints. IEEE Transactions on Parallel and Distributed Systems,25(1), 2–11.

    Google Scholar 

  19. Lee, Z.-J., Su, S.-F., Chuang, C.-C., & Liu, K.-H. (2008). Genetic algorithm with ant colony optimization (GA–ACO) for multiple sequence alignment. Applied Soft Computing,8, 55–78.

    Google Scholar 

  20. Lin, W., Wu, W., & Wang, J. Z. (2016). A heuristic task scheduling algorithm for heterogeneous virtual clusters. Scientific Programming, 2016(5), 1–10.

    Google Scholar 

  21. Priyanto, A. A., Adiwijaya, & Maharani, W. (2009). Implementation of ant colony optimization algorithm on the project resource scheduling problem. Search, no. September 2015.

  22. Liu, X., Li, X., Shi, X., Huang, K., & Liu, Y. (2012). A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. International Journal of Geographical Information Science,26(7), 1325–1343.

    Google Scholar 

  23. Hamza, M., Pawar, S., & Jain, Y. K. (2015). A new modified HBB optimized load balancing in cloud computing. IJCSNS International Journal of Computer Science and Network,4(5), 2277–5420.

    Google Scholar 

  24. Rathore, M., Rai, S., Saluja, N., Zaldívar, D., & Pérez-cisneros, M. (2015). Load balancing of virtual machine using honey bee galvanizing algorithm in cloud. IJCSIT,6(4), 4128–4132.

    Google Scholar 

  25. Durgadevi, P. (2015). Task scheduling using amalgamation of metaheuristics swarm optimization algorithm and cuckoo search in cloud computing environment. Journal for Research,01(09), 10–17.

    Google Scholar 

  26. Khargharia, B., Hariri, S., & Yousif, M. S. (2008). Autonomic power and performance management for computing systems. Cluster Computing,11(2), 167–181.

    Google Scholar 

  27. Dordaie, N., & Navimipour, N. J. (2018). A hybrid particle swarm optimization and hill climbing algorithm for task scheduling in the cloud environments. ICT Express,4(4), 199–202.

    Google Scholar 

  28. Guedria, N. (2015). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing,2016, 455–467.

    Google Scholar 

  29. Mikkilineni, R., & Morana, G. (2014). Infusing cognition into distributed computing: A new approach to distributed datacenters with self-managing services on commodity hardware (virtualized or not). In Proceedings of workshops on enabling technologies: infrastructure for collab enterprises. WETICE (pp. 131–136).

  30. Keller, A., & Ludwig, H. (2003). The WSLA framework: Specifying and monitoring service level agreements for web services. Journal of Network and Systems Management,11(1), 57–81.

    Google Scholar 

  31. Maurer, M., Brandic, I., & Sakellariou, R. (2013). Adaptive resource configuration for Cloud infrastructure management. Futurure Generation Computer Systems,29(2), 472–487.

    Google Scholar 

  32. Mao, M., Li, J., & Humphrey, M. (2010) Cloud auto-scaling with deadline and budget constraints. In ProceedingsIEEE/ACM international workshop on grid computing, 2010 (pp. 41–48).

  33. You, X., Wan, J., Xu, X., Jiang, C., Zhang, W., & Zhang, J. (2011). ARAS-M: Automatic resource allocation strategy based on market mechanism in cloud computing. Journal of Computing,6(7), 1287–1296.

    Google Scholar 

  34. Qu, G., Rawashdeh, O. A., & Hariri, S. (2009). Self-protection against attacks in an autonomic computing environment. In 22nd International conference on computer application and industrial engineering 2009, CAINE 2009 (pp. 13–18).

  35. Bi, J., et al. (2017). Application-aware dynamic fine-grained resource provisioning in a virtualized cloud data center. IEEE Transactions on Automation Science and Engineering,14(2), 1172–1184.

    Google Scholar 

  36. Singh, S., & Chana, I. (2016). EARTH: Energy-aware autonomic resource scheduling in cloud computing. Journal of Intelligent & Fuzzy Systems,30(3), 1581–1600.

    Google Scholar 

  37. Singh, S., Chana, I., Singh, M., & Buyya, R. (2016). SOCCER: Self-optimization of energy-efficient cloud resources. Cluster Computing,19(4), 1787–1800.

    Google Scholar 

  38. Ghahramani, M. H., Zhou, M., & Hon, C. T. (2017). Toward cloud computing QoS architecture: Analysis of cloud systems and cloud services. IEEE/CAA Journal of Automatica Sinica,4(1), 6–18.

    MathSciNet  Google Scholar 

  39. Rajeshwari, B. S. & Dakshayini, M. (2015). Optimized service level agreement based workload balancing strategy for cloud environment. In Souvenir 2015 IEEE international advance computing conference. IACC 2015 (pp. 160–165).

  40. Emeakaroha, V. C., Brandic, I., Maurer, M. & Breskovic, I. (2011). SLA-aware application deployment and resource allocation in clouds. In Proceedings—international computer software and applications conference (pp. 298–303).

  41. Buyya, R., Garg, S. K., & Calheiros, R. N. (2011). SLA-oriented resource provisioning for cloud computing: Challenges, architecture, and solutions. In Proceedings—2011 International Conference Cloud and Service Computing CSC 2011, no. Figure 1 (pp. 1–10).

  42. de Assunção, M. D., & Buyya, R. (2009). Performance analysis of allocation policies for interGrid resource provisioning. Information and Software Technology,51(1), 42–55.

    Google Scholar 

  43. Pedersen, J. M., Riaz, M. T., Celestino, J., Dubalski, B., Ledzinski, D., & Patel, A. (2011). Assessing measurements of QoS for global cloud computing services. In Proceedings—IEEE 9th international conference on dependable, autonomic and secure computing. DASC 2011 (pp. 682–689).

  44. Tang, C., Steinder, M., Spreitzer, M., & Pacifici, G. (2007). A scalable application placement controller for enterprise data centers. In 16th international World Wide Web conference WWW 2007, no. January 2007 (pp. 331–340).

  45. Abdelmaboud, A., Jawawi, D., Ghani, I., Elsafi, A., & Kitchenham, B. (2015). Quality of service approaches in cloud computing: A systematic mapping study. Journal of Systems and Software,101, 159–179.

    Google Scholar 

  46. Ardagna, D., Casale, G., Ciavotta, M., Pérez, J. F., & Wang, W. (2014). Quality-of-service in cloud computing: modeling techniques and their applications. Journal of Internet Services and Applications,5(1), 1–17.

    Google Scholar 

  47. Fujiwara, I., Aida, K., & Ono, I. (2009) Market-based resource allocation for distributed computing. In IPSJ SIG Tech. Report, Vol. 2009-HPC-121 No. 34.

  48. Feng, G., Garg, S., Buyya, R., & Li, W. (2012). Revenue maximization using adaptive resource provisioning in cloud computing environments. In Proceedings—IEEE/ACM international work on grid computing (pp. 192–200).

  49. Jyothi, D., & Anoop, S. (2015). Bio-inspired scheduling of high performance computing applications in cloud: A review. International Journal of Computer Science and Information Technologies,6(1), 485–487.

    Google Scholar 

  50. Xianfeng, Y., & Tao, L. H. (2015). Load balancing of virtual machines in cloud computing environment using improved ant colony algorithm. International Journal of Grid and Distributed Computing,8(6), 19–30.

    Google Scholar 

  51. Xu, G., Pang, J., & Fu, X. (2013). A load balancing model based on cloud partitioning for the public cloud. Tsinghua Science and Technology,18(1), 34–39.

    MATH  Google Scholar 

  52. Huang, H., Wu, C. G., Wu, C. G., Hao, Z. F., & Hao, Z. F. (2009). A pheromone-rate-based analysis on the convergence time of ACO algorithm. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,39(4), 910–923.

    Google Scholar 

  53. Lakhwani, K., Kaur, R, Kumar, P. & Thakur, M. (2019). An extensive survey on data authentication schemes in cloud computing. In Proceedings of 4th international conference on computational science ICCS 2018 (vol. 5, no. 1, pp. 59–66).

  54. Benali, A., El Asri, B., & Kriouile, H. (2015) A pareto-based Artificial Bee Colony and product line for optimizing scheduling of VM on cloud computing. In Proceedings of. 2015 international conference cloud computing technology and applicationa CloudTech 2015 (pp. 1–7).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Abrol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Table 4 List of benchmark functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrol, P., Gupta, S. & Singh, S. A QoS Aware Resource Placement Approach Inspired on the Behavior of the Social Spider Mating Strategy in the Cloud Environment. Wireless Pers Commun 113, 2027–2065 (2020). https://doi.org/10.1007/s11277-020-07306-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07306-1

Keywords