Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolution of PAPR Reduction Techniques: A Wavelet Based OFDM Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Orthogonal frequency division multiplexing (OFDM) is considered among the most suitable multiplexing technique for realizing high speed wireless communication in the present era. Substantially immune to frequency selective fading, high spectral efficiency and superior data rate made OFDM a preferred and popular modulation technique in 3rd generation and 4th generation mobile communication systems. The high value of peak to average power ratio (PAPR) and inter carrier interference (ICI) are the most severe bottleneck for OFDM applications to deliver high performance in communication system. The present work portraits most of conventional and current PAPR reduction techniques through comparative study assisted by simulative analysis which foretells future research potential in wavelet based OFDM to generate more efficient system. PAPR optimization is achieved through hybridization of wavelet with clipping and companding techniques. Different modulation techniques have been analyzed (through Matlab simulation) over proposed hybrid model to observe the PAPR reduction in OFDM system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Han, S. H., & Lee, J. H. (2005). An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wireless Communications, 12, 56–65.

    Google Scholar 

  2. Kulkarni, V. M., & Bhalchandra, A. S. (2012). An overview of various techniques to reduce the peak-to-average power ratio in multicarrier transmission systems. In IEEE international conference on computational intelligence and computing research.

  3. Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268.

    Google Scholar 

  4. Tellado, J. (1998). Multicarrier transmission with low PAPR. Ph.D. dissertation, Stanford University, September 1998.

  5. Sandoval, F., Poitau, G., & Gagnon, F. (2017). Hybrid peak-to-average power ratio reduction techniques: Review and performance comparison. IEEE Access, 5, 27145–27161.

    Google Scholar 

  6. Khan, F. (2009). Reducing uplink signal peakiness. LTE for 4G mobile broadband: Air interface technologies and performance (pp. 88–108). Cambridge: Cambridge University. Press.

    Google Scholar 

  7. Huo, Y., Dong, X., & Xu, W. (2017). 5G cellular user equipment: From theory to practical hardware design. IEEE Access, 5, 13992–14010. https://doi.org/10.1109/access.2017.2727550.

    Article  Google Scholar 

  8. Goel, A., Gupta, P., & Agrawal, M. (2013). SER analysis of PTS based techniques for PAPR reduction in OFDM system. Digital Signal Processing, 23(1), 302–313.

    MathSciNet  Google Scholar 

  9. Li, X., & Cimini, L. J. (1998). Effect of clipping and filtering on the performance of OFDM. IEEE Communications Letters, 2(5), 131–133.

    Google Scholar 

  10. Armstrong, J. (2002). Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electronics Letters, 38(8), 246–247.

    Google Scholar 

  11. Kim, D., & Stüber, G. L. (1999). Clipping noise mitigation for OFDM by decision-aided reconstruction. IEEE Communications Letters, 3(1), 4–6.

    Google Scholar 

  12. Saeedi, H., Sharif, M., & Marvasti, F. (2002). Clipping noise cancellation in OFDM systems using oversampled signal reconstruction. IEEE Communications Letters, 6(2), 73–75.

    Google Scholar 

  13. Singh, S., & Kumar, A. (2015). A modified clipping algorithm for reduction of PAPR in OFDM systems. In Proceedings of IEEE international conference on computational intelligence and computing research (ICCIC) (pp. 527–530).

  14. Singh, S., & Kumar, A. (2016). Performance analysis of adaptive clipping technique for reduction of PAPR in Alamouti coded MIMO-OFDM systems. Procedia Computer Science, 93, 609–616.

    Google Scholar 

  15. Jones, E., Wilkinson, T., & Barton, S. (1994). Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme. Electronics Letters, 30, 2098–2099.

    Google Scholar 

  16. Jones, E., & Wilkinson, T. A. (1996). Combined coding for error control and increased robustness to system nonlinearities in OFDM. In Proceedings of IEEE VTC ‘96, Atlanta, GA (pp. 904–908).

  17. Golay, M. (1994). Complementary series. IEEE Transactions on Information Theory, 7(2), 82–87.

    MathSciNet  Google Scholar 

  18. Davis, J. A., & Jedwab, J. (1997). Peak-to-mean power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes. Electronics Letters, 33(4), 267–268.

    Google Scholar 

  19. Zhang, Y., Yongacoglu, A., Chouinard, J., & Zhang, L. (1999). OFDM peak power reduction by sub block coding and its extended versions. In IEEE vehicular technology conference (vol. 1), May 1999.

  20. Cimini, L. J., Jr., & Sollenberger, N. R. (2000). Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences with embedded side information. In Proceedings of IEEE GlobeComm’00 (pp. 740–750).

  21. Jayalath, A. D. S., & Tellambura, C. (2005). SLM and PTS peak-power reduction of OFDM signals without side information. IEEE Transactions on Wireless Communication, 4(5), 2006–2013.

    Article  Google Scholar 

  22. Nguyen, T. T., & Lampe, L. (2008). On partial transmit sequences for PAR reduction in OFDM systems. IEEE Transactions on Wireless Communication, 2, 746–755.

    Article  Google Scholar 

  23. Zhou, Y., & Jiang, T. (2009). A novel multi-point square mapping combined with PTS to reduce PAPR of OFDM signals without side information. IEEE Transactions on Broadcasting, 55, 831–835.

    Article  Google Scholar 

  24. Yang, L., Soo, K. K., Li, S. Q., & Siu, Y. M. (2011). PAPR reduction using low complexity PTS to construct of OFDM signals without side information. IEEE Transactions on Broadcasting, 57, 284–290.

    Article  Google Scholar 

  25. Elavarasan, P., & Nagarajan, G. (2015). Peak-power reduction using improved partial transmit sequence in orthogonal frequency division multiplexing systems. Computers & Electrical Engineering, 44, 80–90.

    Article  Google Scholar 

  26. Vittal, M. V. R., & Rama Naidu, K. (2017). A novel reduced complexity optimized PTS technique for PAPR reduction in wireless OFDM systems. Egyptian Informatics Journal, 18, 123–131.

    Article  Google Scholar 

  27. Yang, L., Siu, Y. M., Soo, K. K., Leung, S. W., & Li, S. Q. (2012). Low-complexity PAPR reduction technique for OFDM systems using modified widely linear SLM scheme. International Journal of Electronics and Communications (AEÜ), 66, 1006–1010.

    Google Scholar 

  28. Namitha, A. S., & Sameer, S. M. (2014). An improved technique to reduce peak to average power ratio in OFDM systems using Gold/Hadamard codes with selective mapping. In IEEE international conference on signal processing and communications (SPCOM).

  29. Mhatre, K., & Khot, U. P. (2015). Efficient selective mapping PAPR reduction technique. Procedia Computer Science, 45, 620–627.

    Google Scholar 

  30. Namitha, A. S., & Sameer, S. M. (2017). A bandwidth efficient selective mapping technique for the PAPR reduction in spatial multiplexing MIMO-OFDM wireless communication system. Physical Communication, 25, 128–138.

    Google Scholar 

  31. Jayalath, D. S., & Tellambura, C. (2000). Reducing the peak to-average power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving. Electronics Letters, 36(13), 1161–1163.

    Google Scholar 

  32. Puspitaningayu, P., & Hendrantoro, G. (2014). Performance of anti-jamming techniques with bit interleaving in OFDM-based tactical communications. In International conference of information technologies and electrical engineering (ICITEE) (pp. 1–5). https://doi.org/10.1109/iciteed.2014.7007927.

  33. Abdulrahman Ikram Siddiq. (2015). PAPR reduction in OFDM systems using peak insertion. AEU International Journal of Electronics and Communications, 69(2), 573–578.

    Google Scholar 

  34. Guel, D., Palicot, J., & Louet, Y. (2010). Tone reservation technique based on geometric method for orthogonal frequency division multiplexing peak-to-average power ratio reduction. IET Communications, 4(17), 2065–2073. https://doi.org/10.1049/iet-com.2009.0808.

    Article  Google Scholar 

  35. Hellberg, R., & Huddinge (SE). (2010). Method for limiting local bandwidth impairment using tone reservation. United States Patent Application Publication US 20100008442A1, Jan. 14.

  36. Hou, J., Ge, J., & Gong, F. (2015). Tone reservation technique based on peak-windowing residual noise for PAPR reduction in OFDM systems. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/tvt.2014.2378811.

    Article  Google Scholar 

  37. Han, S. H. (2006). Tone injection with hexagonal constellation for peak-to-average power ratio reduction in OFDM. IEEE Communications Letters, 10(9), 646–648.

    Google Scholar 

  38. Chen, J.-C., & Wen, C.-K. (2010). PAPR reduction of OFDM signals using cross-entropy-based tone injection schemes. IEEE Signal Processing Letters, 17(8), 727–730.

    Google Scholar 

  39. Lee, W. C., Choi, J. P., & Huynh, C. K. (2015). A modified tone injection scheme for PAPR reduction using genetic algorithm. ICT Express, 1, 76–81.

    Google Scholar 

  40. Krongold, B. S., & Jones, D. L. (2003). PAR reduction in OFDM via active constellation extension. IEEE Transactions on Broadcasting, 49(3), 258–268.

    Article  Google Scholar 

  41. Sen-Hung Wang; Wei-Lun Lin; Bo-Rong Huang; Chih-Peng Li. (2016). PAPR reduction in OFDM systems using active constellation extension and subcarrier grouping techniques. IEEE Communications Letters, 99, 1.

    Google Scholar 

  42. Jiang, T., & Zhu, G. (2004). Nonlinear companding transform for reducing peak to average power ratio of OFDM signals. IEEE Transactions on Broadcasting, 50(3), 342–346. https://doi.org/10.1109/TBC.2004.834030.

    Article  Google Scholar 

  43. Jeng, S.-S., & Chen, J.-M. (2011). Efficient PAPR reduction in OFDM systems based on a companding technique with trapezium distribution. IEEE Transactions on Broadcasting, 57(2), 291–298.

    Article  Google Scholar 

  44. Mohanty, B., & Ramavath, S. (2014). A companding technique for PAPR reduction in DWT OFDM systems. In IEEE international conference on advanced communication control and computing technologies (ICACCCT) (pp. 837–841).

  45. Gupta, M. K., & Tiwari, S. (2013). Performance evaluation of conventional and wavelet based OFDM system. International Journal of Electronics and Communications (AEÜ), 67, 348–354.

    Article  Google Scholar 

  46. Sarowa, S., Singh, H., Agrawal, S., et al. (2017). A novel energy-efficient ICI cancellation technique for bandwidth improvements through cyclic prefix reuse in an OFDM system. Frontiers of Information Technology & Electronic Engineering, 18, 1892–1899. https://doi.org/10.1631/FITEE.1601333.

    Article  Google Scholar 

  47. Zhang, H., Yuan, D., & Pätzold, M. (2007). Novel study on PAPRs reduction in wavelet-based multicarrier modulation systems. Digital Signal Processing, 17, 272–279.

    Article  Google Scholar 

  48. Huang, X.-L., Wang, G., Chen, J., & Sun, Q.-Q. (2012). A novel Haar wavelet-based BPSK OFDM system robust to spectral null channels and with reduced PAPR. In Springer wireless PersCommun (pp. 599–612).

  49. Zakaria, J., & Salleh, M. F. M. (2012). Wavelet-based OFDM analysis: BER performance and PAPR profile for various wavelets. In IEEE symposium on industrial electronics and applications (ISIEA2012).

  50. Anuradha, & Kumar, N. (2014). BER analysis of conventional and wavelet based OFDM in LTE using different modulation techniques. In IEEE international conference RAECS (pp. 1–4).

  51. Zakaria, J., & Salleh, M. F. M. (2017). PAPR reduction scheme: wavelet packet-based PTS with embedded side information data scheme. IET Communication, 11(1), 127–135.

    Google Scholar 

  52. Kaur, N., & Kumar, N. (2017). Review and analysis of Simulink based OFDM. In 2017 3rd international conference on advances in computing, communication & automation (ICACCA) (Fall), Dehradun (pp. 1–5). https://doi.org/10.1109/icaccaf.2017.8344664.

  53. Kaur, N., & Kumar, N. (2019). Comparative analysis of ICI self cancellation techniques for wavelet OFDM under different channels in Simulink. Wireless Personal Communications, 105, 1513–1525. https://doi.org/10.1007/s11277-019-06157-9.

    Article  Google Scholar 

  54. Ishu, & Kumar, N. (2014). PAPR reduction in wavelet based SCFDMA using pulse shaping filters for LTE uplink transmission. International Journal of Applied Engineering Research (IJAER), 9, 973–4562.

    Google Scholar 

  55. Kaur, G., Kumar, N., & Sohi, B. S. (2015). PAPR reduction technique on wavelet based OFDM system by employing multi-level wavelet transform. In 2015 international conference on signal processing, computing and control (ISPCC), Waknaghat (pp. 215–219). https://doi.org/10.1109/ispcc.2015.7375028.

  56. Kumar, N., & Sohi, B. S. (2016). Evaluation of conventional and wavelet based OFDM system for ICI cancellation. Wireless Personal Communication, 91, 1435–1446. https://doi.org/10.1007/s11277-016-3537-9.

    Article  Google Scholar 

  57. Sarowa, S., Singh, H., Agrawal, S., & Sohi, B. S. (2018). Design of a novel hybrid ICI mitigation technique through wavelet implication in OFDM system. Digital Communications and Networks, 4, 258–263. https://doi.org/10.1016/j.dcan.2017.09.008.

    Article  Google Scholar 

  58. Joshi, A., Manas, A., Garg, S., & Wason, R. (2019). APR reduction comparison in FFT-based OFDM versus DWT-based OFDM. Advances in Signal Processing and Communication Lecture Notes in Electrical Engineering, 526, 107–115. https://doi.org/10.1007/978-981-13-2553-3_1.

    Article  Google Scholar 

  59. Anoh, K., Ikpehai, A., Rabie, K., Adebisi, B., & Popoola, W. (2018). PAPR reduction of wavelet-OFDM systems using pilot symbols. In 2018 IEEE international symposium on power line communications and its applications (ISPLC), Manchester (pp. 1–6). https://doi.org/10.1109/ISPLC.2018.8360242.

  60. Khalid, S., & Shah, S. I. (2006). PAPR reduction by using discrete wavelet transform. In 2006 international conference on emerging technologies, Peshawar (pp. 179–182). https://doi.org/10.1109/icet.2006.336008.

  61. Kumbasar, V., & Kucur, O. (2008). Better wavelet packet tree structures for PAPR reduction in WOFDM systems. Digital Signal Processing, 18(6), 885–891. https://doi.org/10.1016/j.dsp.2008.06.003.

    Article  Google Scholar 

  62. Singh, P., Pal, S., & Sood, N. (2017). PAPR reduction in wavelet packet-based OFDM using PSO-based PTS technique. International Journal of Systems, Control and Communications, 8(1), 89–99. https://doi.org/10.1504/ijscc.2017.081541.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Sarowa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarowa, S., Kumar, N., Agrawal, S. et al. Evolution of PAPR Reduction Techniques: A Wavelet Based OFDM Approach. Wireless Pers Commun 115, 1565–1588 (2020). https://doi.org/10.1007/s11277-020-07643-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07643-1

Keywords