Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Photonic Bandgap Hepta-Band Stacked Microstrip Antenna for L, S and C Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposed a novel design of hepta-band microstrip patch antenna which is realized by a rectangular patch. The proposed patch antenna resonates between 1 and 9 GHz at seven distinct frequencies which covers L-, S- and C-band. The proposed microstrip patch antenna was designed using IE3D v. 15.00 simulation tool and have to achieve seven distinct band by using the combination of photonic band-gap (PBG) structure and stacking. The reflected power and resonating frequency of each bands are − 28.43 dB, − 14.57 dB, − 14.47 dB, − 21.53 dB, − 14.32 dB, − 29.47 dB and − 12.20 dB at 1.72 GHz, 2.36 GHz, 3.08 GHz, 3.64 GHz, 5 GHz, 6.16 GHz and 7.32 GHz respectively. And also, have shown its performance improvement by the use of the PBG structure and stacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Balanis, C. A. (1997). Antenna theory: Analysis and design. Wiley.

  2. Yang, X., Wang, J., & Sim, C. Y. D. (2018). A differentially-driven dual-polarized high-gain stacked patch antenna. IEEE Antennas and Wireless Propagation Letters, 17(7), 1181–1185.

    Article  Google Scholar 

  3. Slavova, A., Rahman, A. A., & Omar, A. S. (2004). Broadband bandwidth enhancement of an Aperture coupled microstrip patch antenna. Antennas and Propagation Society International Symposium, 4, 3737–3740.

    Article  Google Scholar 

  4. Qian, Y., Cocciali, R., Sievenpiper, D., Radisic, V., Yablonowtch, E., & Itoh, T. (1999). Microstrip patch antenna using novel photonic band-gap structures. Microwave Journal, 42(1), 66–76.

    Google Scholar 

  5. Jam, S., & Simruni, M. (2018). Performance enhancement of a compact wideband patch antenna array using EBG structures. International Journal of Electronics and Communications, 89, 42–55.

    Article  Google Scholar 

  6. Yablonovitch, E. (1987). Inhibited spontaneous emission in solid state physics and electronics. Physical Review Letters, 58(20), 2059–2062.

    Article  Google Scholar 

  7. Joannopoulos, J. D., Meade, R. D., & Winn, J. N. (1995). Photonic crystals. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  8. Agarwal, A., & Kaur, A. (2016). A dual band stacked aperture coupled antenna array for WLAN applications. Microwave and Optical Technology Letters, 59(3), 648–654.

    Article  Google Scholar 

  9. Razali, R., & Bialkowski, M. E. (2009). Coplanar inverted-F antenna with open-end ground slots for multiband operation. IEEE Antennas and Wireless Propagation Letters, 8, 1029–1032.

    Article  Google Scholar 

  10. Kaur, A., Khanna, R., & Kartikeyan, M. (2015). A multilayer dual wideband circularly polarized microstrip antenna with DGS for WLAN/Bluetooth/ZigBee/Wi-Max/IMT band applications. International Journal of Microwave and Wireless Technologies, 9(2), 317–325.

    Article  Google Scholar 

  11. Sami, G., Mohanna, M., & Rabeh, M. L. (2013). Tri-band microstrip antenna design for wireless communication applications. NRIAG Journal of Astronomy and Geophysics, 2(1), 39–44.

    Article  Google Scholar 

  12. Ahsan, M. R., Ullah, M. H., & Islam, M. T. (2014). Slot loaded rectangular patch antenna for dual-band operations on glass-reinforced epoxy laminated inexpensive substrate. Journal of Computational Electronics, 13(4), 989–995.

    Article  Google Scholar 

  13. Jang, T. H., Kim, H. Y., Song, I. S., Lee, C. J., Lee, J. H., & Park, C. S. (2016). A wideband aperture efficient 60-GHz series-fed E-shaped patch antenna array with copolarized parasitic patches. IEEE Transactions on Antennas and Propagation, 64(12), 5518–5521.

    Article  Google Scholar 

  14. Kundu, A., & Bhattacharjee, A. K. (2015). Design of compact triple frequency microstrip antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letters, 57(9), 2125–2129.

    Article  Google Scholar 

  15. Malekpoora, H., & Hamidkhanib, M. (2019). Compact multi-band stacked circular patch antenna for wideband applications with enhanced gain. Electromagnetics, 39(4), 241–253.

    Article  Google Scholar 

  16. Malik, J., Kalaria, P. C., & Kartikeyan, M. V. (2013). Complementary Sierpinski gasket fractal antenna for dual-band WiMAX/WLAN(3.5/5.8 GHz) applications. International Journal of Microwave and Wireless Technologies, 5(4), 499–505.

    Article  Google Scholar 

  17. IE3D Electromagnetic simulation and optimization package, Version 15.00.

  18. Rop, K. V., Konditi, D. B. O., Ouma, H. A., & Musyoki, S. M. (2012). Parameter optimization in design of a rectangular microstrip patch antenna using adaptive neuro-fuzzy inference system technique. International Journal on Technical and Physical Problems of Engineering, 4(3), 16–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Sachan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachan, R., Dhubkarya, D.C. Photonic Bandgap Hepta-Band Stacked Microstrip Antenna for L, S and C Band Applications. Wireless Pers Commun 116, 1913–1931 (2021). https://doi.org/10.1007/s11277-020-07771-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07771-8

Keywords