Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Triple-Band Dual-Polarized Dipole Antenna for 5G Sub-6 GHz Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A triple-band ± 45° dual-polarized dipole antenna is presented in this paper. The proposed antenna covers two n77 bands and one n79 band in 5G NR frequency spectrums with S11, S22 <− 15 dB return loss. The profile antenna exhibits the measured impedance bandwidths of 250 MHz, 150 MHz and 350 MHz from the operating bands 3.6–3.85 GHz, 4.05–4.2 GHz and 4.8–5.15 GHz respectively. Antenna is fabricated with four substrates; one radiator, one reflector and two feeding baluns. Antenna is designed and optimized with HFSS simulator and fabricated for experimental verification. Antenna gives a stable radiation pattern of 8.55 dBi high gain with 70° half power beam width (HPBW) that makes it a good candidate for wireless 5G sub-6 GHz and multiband base station applications. Finally, antenna is tested in a realistic application environment to show the utility of the proposed antenna for wireless sub-6 GHz IoT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shahidul Islam, M., Islam, M. T., Almutairi, A. F., Beng, G. K., Misran, N., & Amin, N. (2019). Monitoring of the human body signal through the Internet of things (IoT) based LoRa wireless network system. Applied Sciences, 9(9), 1884.

    Article  Google Scholar 

  2. Alomainy, A., Hao, Y., & Pasveer, F. (2007). Numerical and experimental evaluation of a compact sensor antenna for healthcare devices. IEEE Transactions on Biomedical Circuits and Systems, 1(4), 242–249.

    Article  Google Scholar 

  3. Koga, Y., & Kai, M. (2018). A transparent double folded loop antenna for IoT applications. In 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 762–765). https://doi.org/10.1109/APWC.2018.8503801.

  4. Jha, K. R., Bukhari, B., Singh, C., Mishra, G., & Sharma, S. K. (2018). Compact planar multistandard MIMO antenna for IoT applications. IEEE Transactions on Antennas and Propagation, 66(7), 3327–3336.

    Article  Google Scholar 

  5. Damis, H. A., Khalid, N., Mirzavand, R., Chung, H.-J., & Mousavi, P. (2018). Investigation of epidermal loop antennas for biotelemetry IoT applications. IEEE Access, 6, 15806–15815.

    Article  Google Scholar 

  6. Zhou, S. G., Tan, P. K., & Chio, T. H. (2012). Low-profile, wideband dualpolarized antenna with high isolation and low cross polarization. IEEE Antennas and Wireless Propagation Letters, 11, 1032–1035.

    Article  Google Scholar 

  7. Li, B., Yin, Y. Z., Hu, W., Ding, Y., & Zhao, Y. (2012). Wideband dual-polarized patch antenna with low cross polarization and high isolation. IEEE Antennas and Wireless Propagation Letters, 11, 427–430.

    Article  Google Scholar 

  8. Wu, B. Q., & Luk, K. M. (2009). A broadband dual-polarized magneto-electric dipole antenna with simple feeds. IEEE Antennas and Wireless Propagation Letters, 8, 60–63.

    Article  Google Scholar 

  9. Xue, Q., Liao, S. W., & Xu, J. H. (2013). A differentially-driven dualpolarized magneto-electric dipole antenna. IEEE Transactions on Antennas and Propagation, 61(1), 425–430.

    Article  Google Scholar 

  10. Siu, L., Wong, H., & Luk, K. M. (2009). A dual-polarized magneto-electric dipole with dielectric loading. IEEE Transactions on Antennas and Propagation, 57(3), 616–623.

    Article  Google Scholar 

  11. Chu, Q. X., & Luo, Y. (2013). A broadband unidirectional multi-dipole antenna with very stable beamwidth. IEEE Transactions on Antennas and Propagation, 61(5), 2847–2852.

    Article  Google Scholar 

  12. Luo, Y., & Chu, Q. X. (2015). Oriential crown-shaped differentially fed dualpolarized multidipole antenna. IEEE Transactions on Antennas and Propagation, 63(11), 4678–4684.

    Article  MathSciNet  Google Scholar 

  13. Chu, Q. X., Wen, D. L., & Luo, Y. (2015). A broadband ±45° dual-polarized antenna with y-shaped feeding lines. IEEE Transactions on Antennas and Propagation, 63(2), 483–490.

    Article  Google Scholar 

  14. Cui, Y. H., Li, R. L., & Fu, H. Z. (2014). A broadband dual-polarized planar antenna for 2G/3G/LTE base stations. IEEE Transactions on Antennas and Propagation, 62(9), 4836–4840.

    Article  Google Scholar 

  15. Gou, Y. S., Yang, S. W., Li, J. X., & Nie, Z. P. (2014). A compact dualpolarized printed dipole antenna with high isolation for wideband base station applications. IEEE Transactions on Antennas and Propagation, 62, 4392–4395.

    Article  Google Scholar 

  16. Huang, H., Liu, Y., & Gong, S. X. (2017). A dual-broadband, dual-polarized base station antenna for 2G/3G/4G applications. IEEE Antennas and Wireless Propagation Letters, 16, 1111–1114.

    Article  Google Scholar 

  17. Liu, X., He, S., Zhou, H., Xie, J., & Wang, H. (2006). A novel low-profile, dual-band, dual-polarization broadband array antenna for 2G/3G base station. In 2006 Presented at the IET International Conference on Wireless, Mobile, Multimedia Networks (pp. 1–4).

  18. Li, B. A., Yin, Y. Z., Hu, W., Ding, Y., & Zhao, Y. (2012). Wideband dualpolarized patch antenna with low cross polarization and high isolation. IEEE Antennas and Wireless Propagation Letters, 11, 427–430.

    Article  Google Scholar 

  19. Cui, G., Zhou, S.-G., Zhao, G., & Gong, S.-X. (2016). A compact dual-band dual-polarized antenna for base station application. Progress in Electromagnetics Research C, 64, 61–70.

    Article  Google Scholar 

  20. He, Y., Pan, Z., Cheng, X., He, Y., Qiao, J., & Tentzeris, M. M. (2015). A novel dual-band, dual-polarized, miniaturized and low-profile base station antenna. IEEE Transactions on Antennas and Propagation, 63(12), 5399–5408.

    Article  MathSciNet  Google Scholar 

  21. Oh, T., Lim, Y. G., Chae, C. B., & Lee, Y. (2015). Dual-Polarization slot antenna with high cross-polarization discrimination for indoor small-cell MIMO systems. IEEE Antennas and Wireless Propagation Letters, 14, 374–377.

    Article  Google Scholar 

  22. Luo, Y., Chu, Q. X., & Wen, D. L. (2016). A ±45º dual-polarized base-station antenna with enhanced cross-polarization discrimination via addition of four parasitic elements placed in a square contour. IEEE Transactions on Antennas and Propagation, 64, 1514–1519.

    Article  MathSciNet  Google Scholar 

  23. Xie, J. J., Yin, Y. Z., Wang, J. H., & Liu, X. L. (2013). Wideband dual polarized electromagnetic fed patch antenna with high isolation and low cross-polarization. Electronics Letters, 49(3), 171–173.

    Article  Google Scholar 

  24. Zhu, F., Gao, S., Ho, A. T. S., Abd-Alhameed, R. A., See, C. H., Brown, T. W. C., Li, J., Wei, G., & Xu, J. (2014). Ultra-wideband dual-polarized patch antenna with four capacitively coupled feeds. IEEE Transactions on Antennas and Propagation, 62(5), 2440–2449.

    Article  Google Scholar 

  25. Gao, Y., Ma, R., Wang, Y., Zhang, Q., & Parini, C. (2016). Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO. IEEE Transactions on Antennas and Propagation, 64(10), 445–4449.

    Article  MathSciNet  Google Scholar 

  26. Hua, C., Li, R., Wang, Y., & Lu, Y. (2018). Dual-polarized filtering antenna with printed Jerusalem-cross radiator. IEEE Access, 6, 9000–9005.

    Article  Google Scholar 

  27. Liu, Y., Wang, S., Wang, X., & Jia, Y. (2019). A differentially fed dualpolarized slot antenna with high isolation and low profile for base station application. IEEE Antennas Wireless Propagation Letters, 18(2), 303–307.

    Article  Google Scholar 

  28. Huang, H., Li, X., & Liu, Y. (2019). A low-profile, dual-polarized patch antenna for 5G MIMO application. IEEE Transactions on Antennas and Propagation, 67(2), 1275–1279.

    Article  Google Scholar 

  29. Wen, L.-H., Gao, S., Luo, Q., Yang, Q., Hu, W., & Yin, Y. (2019). A low-cost differentially driven dual-polarized patch antenna by using openloop resonators. IEEE Transactions on Antennas and Propagation, 67(4), 2745–2750.

    Article  Google Scholar 

  30. Zhang, Z.-Y., & Wu, K.-L. (2019). Double torsion coil feeding structure for patch antennas. IEEE Transactions on Antennas and Propagation, 67(6), 3688–3694.

    Article  Google Scholar 

  31. Ciydem, M., & Miran, E. A. (2020). Dual-polarization wideband Sub-6 GHz suspended patch antenna for 5G base station. IEEE Antennas and Wireless Propagation Letters, 19(7), 1142–1146. https://doi.org/10.1109/LAWP.2020.2991967

    Article  Google Scholar 

  32. Deng, C., Yektakhah, B., & Sarabandi, K. (2019). Series-fed dual-polarized single-layer linear patch array with high polarization purity. IEEE Antennas and Wireless Propagation Letters, 18(9), 1746–1750. https://doi.org/10.1109/LAWP.2019.2929226

    Article  Google Scholar 

  33. Huang, H., Li, X., & Liu, Y. (2018). 5G MIMO antenna based on vector synthetic mechanism. IEEE Antennas and Wireless Propagation Letters, 17(6), 1052–1055. https://doi.org/10.1109/LAWP.2018.2830807

    Article  Google Scholar 

  34. Al-Tarifi, M. A., Sharawi, M. S., & Shamim, A. (2018). Massive MIMO antenna system for 5G base stations with directive ports and switched beam steering capabilities. IET Microwaves Antennas and Propagation, 12, 1709–1718.

    Article  Google Scholar 

  35. Alieldin, A., Huang, Y., Stanley, M., Joseph, S. D., & Lei, D. (2018). A 5G MIMO antenna for broadcast and traffic communication topologies based on pseudo inverse synthesis. IEEE Access, 6, 65935–65944. https://doi.org/10.1109/ACCESS.2018.2878639

    Article  Google Scholar 

  36. Liu, Y., Wang, S., Wang, X., & Jia, Y. (2019). A differentially fed dual-polarized slot antenna with high isolation and low profile for base station application. IEEE Antennas and Wireless Propagation Letters, 18(2), 303–307. https://doi.org/10.1109/LAWP.2018.2889645

    Article  Google Scholar 

  37. Li, M., Chen, X., Zhang, A., & Kishk, A. A. (2019). Dual-polarized broadband base station antenna backed with dielectric cavity for 5G communications. IEEE Antennas and Wireless Propagation Letters, 18(10), 2051–2055. https://doi.org/10.1109/LAWP.2019.2937201

    Article  Google Scholar 

Download references

Funding

This paper is supported by National Science Foundation of China (Nos. 62071003, 41874174, 61901004, 61801194), the Opening Foundation of National Key Laboratory of Electromagnetic Environment (No. 201802003), The fund for key Laboratory of Electromagnetic scattering (No. 61424090107), Natural Science Foundation of Anhui Province (2008085MF186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Yang.

Ethics declarations

Conflict of interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Tahseen, H.U., Hussain, S.S.I. et al. Triple-Band Dual-Polarized Dipole Antenna for 5G Sub-6 GHz Communications. Wireless Pers Commun 124, 2109–2120 (2022). https://doi.org/10.1007/s11277-021-09447-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09447-3

Keywords