Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Introducing a Novel Data Over Voice Technique for Secure Voice Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The increasing need for privacy-preserving voice communications is encouraging the investigation of new secure voice transmission techniques. This paper refers to the original concept of sending encrypted data or speech as pseudo-speech in the audio domain over existing voice communication infrastructures, like 3G cellular network and Voice over IP (VoIP). The distinctive characteristic of such a communication system is that it relies on the robust transmission of binary information in the form of audio signal. This work presents a novel Data over Voice (DoV) technique based on codebooks of short harmonic waveforms. The technique provides a sufficiently fast and reliable data rate over cellular networks and many VoIP applications. The new method relies on general principles of Linear Predictive Coding for voice compression (LPC voice coding) and is more versatile compared to solutions trained on exact channel models. The technique gives by design a high control over the desired rate of transmission and provides robustness to channel distortion. In addition, an efficient codebook design approach inspired by quaternary error correcting codes is proposed. The usability of the proposed DoV technique for secure voice communication over cellular networks and VoIP has been successfully validated by empirical experiments. The paper details the system parameters, putting a special emphasis on system’s security and technical challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

Examples of some DoV signals recorded during tests are available online at https://github.com/PiotrKrasnowski/Data_over_Voice.

Notes

  1. https://core.telegram.org, https://signal.org.

  2. https://github.com/PiotrKrasnowski/Data_over_Voice.

  3. https://rowetel.com.

  4. https://www.gnu.org/software/octave/.

References

  1. Scott-Railton, J., Marczak, B., Razzak, B. A., Crete-Nishihata, M., & Deibert, R. (2017). Reckless exploit: Mexican journalists, lawyers, and a child targeted with NSO spyware. Report, The Citizen Lab, 2017. https://tspace.library.utoronto.ca/bitstream/1807/96731/1/Report%2393-recklessexploit.pdf. Accessed 13 July 2020.

  2. Werner, M., Pietsch, C., Joetten, C., Sgraja, C., Frank, G., Granzow, W., & Huang, J. (2009). Cellular in-band modem solution for eCall emergency data transmission. In VTC Spring 2009-IEEE 69th Vehicular Technology Conference (pp. 1–6). IEEE. https://doi.org/10.1109/VETECS.2009.5073434

  3. Dhananjay, A., Sharma, A., Paik, M., Chen, J., Kuppusamy, T. K., Li, J., & Subramanian, L. (2010). Hermes: data transmission over unknown voice channels. In Proceedings of the sixteenth annual international conference on Mobile computing and networking (pp. 113–124). https://doi.org/10.1145/1859995.1860010.

  4. Mezgec, Z., Chowdhury, A., Kotnik, B., & Svecko, R. (2009). Implementation of PCCD-OFDM-ASK robust data transmission over gsm speech channel. Informatica, 20(1), 51–78. https://doi.org/10.15388/Informatica.2009.237.

  5. Chen, L., & Guo, Q. (2011). An OFDM-based secure data communicating scheme in GSM voice channel. In 2011 International Conference on Electronics, Communications and Control (ICECC) (pp. 723–726). IEEE. https://doi.org/10.1109/ICECC.2011.6066715.

  6. Katugampala, N., Villette, S., & Kondoz, A. M. (2003). Secure voice over GSM and other low bit rate systems. In IEE Seminar on Secure GSM and Beyond (Digest No. 2003/10059). IET, 2003.

  7. Krasnowski, P., Lebrun, J., & Martin, B. (2020). Introducing a Verified Authenticated Key Exchange Protocol over Voice Channels for Secure Voice Communication. In ICISSP (pp. 683–690). Scitepress Digital Library, 2020. https://doi.org/10.5220/0009156506830690.

  8. Lee, S., Ha, Y., Yoon, S., Jo, H., Jang, S., Lee, J., et al. (2017). The vulnerability exploitation conveying digital data over mobile voice call channels. Wireless Personal Communications, 96, 1–28. https://doi.org/10.1007/s11277-017-4229-9.

    Article  Google Scholar 

  9. Soong, F., & Juang, B. (1984). Line spectrum pair (LSP) and speech data compression. In ICASSP’84. IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol. 9, pp. 37–40). IEEE. https://doi.org/10.1109/ICASSP.1984.1172448.

  10. Katugampala, N. N., Al-Naimi, K. T., Villette, S., & Kondoz, A. M. (2005). Real-time end-to-end secure voice communications over GSM voice channel. In 2005 13th European Signal Processing Conference (pp. 1–4). IEEE.

  11. Özkan, M. A., & Örs, S. B. (2015). Data transmission via GSM voice channel for end to end security. In 2015 IEEE 5th International Conference on Consumer Electronics-Berlin (ICCE-Berlin) (pp. 378–382). IEEE. https://doi.org/10.1109/ICCE-Berlin.2015.7391285.

  12. Rashidi, M., Sayadiyan, A., & Mowlaee, P. (2008). A harmonic approach to data transmission over GSM voice channel. In 2008 3rd international conference on information and communication technologies: From theory to applications (pp. 1–4). IEEE. https://doi.org/10.1109/ICTTA.2008.4530052.

  13. LaDue, C. K., Sapozhnykov, V. V., & Fienberg, K. S. (2008). A data modem for GSM voice channel. IEEE Transactions on Vehicular Technology, 57(4), 2205–2218. https://doi.org/10.1109/TVT.2007.912322.

  14. Sapozhnykov, V. V., & Fienberg, K. S. (2012). A low-rate data transfer technique for compressed voice channels. Journal of Signal Processing Systems, 68(2), 151–170. https://doi.org/10.1007/s11265-011-0594-x.

    Article  Google Scholar 

  15. Shahbazi, A., Rezaie, A. H., Sayadiyan, A., & Mosayyebpour, S. (2009). A novel speech-like symbol design for data transmission through GSM voice channel. In 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 478–483). IEEE.https://doi.org/10.1109/ISSPIT.2009.5407541

  16. Boloursaz, M., Hadavi, A. H., Kazemi, R., & Behnia, F. (2013). A data modem for GSM Adaptive Multi Rate voice channel. In East-West Design & Test Symposium (EWDTS 2013) (pp. 1–4). IEEE. https://doi.org/10.1109/EWDTS.2013.6673152.

  17. Zue, V., Seneff, S., & Glass, J. (1990). Speech database development at MIT: Timit and beyond. Speech Communication, 9(4), 351–356. https://doi.org/10.1016/0167-6393(90)90010-7.

    Article  Google Scholar 

  18. Kazemi, R., Mashhadi, M. B., Khoozani, M. H., & Behnia, E. (2015). Modem based on sphere packing techniques in high-dimensional Euclidian sub-space for efficient data over voice communication through mobile voice channels. IET Communications. https://doi.org/10.1049/iet-com.2014.0610.

  19. Zhang, T., Li, S., & Bin, Yu. (2021). A universal data transfer technique over voice channels of cellular mobile communication networks. IET Communications, 15(1), 22–32. https://doi.org/10.1049/cmu2.12047.

    Article  Google Scholar 

  20. Zhan, X. (2017). Data transmission method based on single carrier over GSM voice channel. Revista de la Facultad de Ingeniera, 32(9), 23–29.

    Google Scholar 

  21. Chmayssani, T., & Baudoin, G. (2008). Data transmission over voice dedicated channels using digital modulations. In 18th International Conference Radioelektronika. IEEE. https://doi.org/10.1109/RADIOELEK.2008.4542682

  22. Ali, B. T., Baudoin, G., & Venard , O. (2013). Data transmission over mobile voice channel based on M-FSK modulation. In 2013 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 4416–4421). IEEE. https://doi.org/10.1109/WCNC.2013.6555289

  23. Lawrence Rabiner, R., & Schafer, R. W. (2011). Theory and applications of digital speech processing. Upper Saddle River, NJ: Pearson.

  24. Bäckström, T. (2017). Speech coding with code-excited linear prediction. Cham: Springer.

    Google Scholar 

  25. Heitkamper, P. (1995). Optimization of an acoustic echo canceller combined with adaptive gain control. In 1995 International Conference on Acoustics, Speech, and Signal Processing (Vol. 5, pp. 3047–3050). IEEE. https://doi.org/10.1109/ICASSP.1995.479488.

  26. Tsoukalas, D. E., Mourjopoulos, J. N., & Kokkinakis, G. (1997). Speech enhancement based on audible noise suppression. IEEE Transactions on Speech and Audio Processing, 5(6), 497–514. https://doi.org/10.1109/89.641296.

  27. Fant, G. (1960). Acoustic Theory of Speech Production: With Calculations based on X-Ray Studies of Russian Articulations. Boston: De Gruyter Mouton. https://doi.org/10.1515/9783110873429.

  28. Lochbaum, C. & Kelly, J. (1962). Speech synthesis. In Proceedings of the Speech Communication Seminar (pp. 583–596). Speech Transmission Laboratory.

  29. 3GPP. Adaptive Multi-Rate (AMR) speech codec; Transcoding functions. Technical Report TS 26.090, Release 15, 3GPP (2018). http://www.3gpp.org/ftp//Specs/archive/26_series/26.090/26090-f00.zip.

  30. Herlein, G., Valin, J. M., Heggestad, A., & Moizard, A. (2009). RTP payload format for the Speex codec. Request for Comments (RFC), 5574. https://tools.ietf.org/html/rfc5574.

  31. Valin, J. M., Vos, K., & Terriberry, T. (2012). Definition of the Opus audio codec. Technical Specification RFC 6176, IETF. https://tools.ietf.org/html/rfc6716.

  32. Alves-Pinto, A., Palmer, A. R., & Lopez-Poveda, E. A. (2014). Perception and coding of high-frequency spectral notches: Potential implications for sound localization. Frontiers in Neuroscience, 8, 112. https://doi.org/10.3389/fnins.2014.00112.

    Article  Google Scholar 

  33. van Nee, R., & Prasad, R. (2000). OFDM for wireless multimedia communications. Boston, MT: Artech House.

    Google Scholar 

  34. Gold, B., Morgan, N., & Ellis, D. (2011). Speech and audio signal processing: Processing and perception of speech and music. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  35. Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika. https://doi.org/10.2307/2334770

  36. Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā: The Indian Journal of Statistics, Series B, 32(2), 115–128.

  37. Schulze, H., & Lüders, C. (2005). Theory and applications of OFDM and CDMA: Wideband wireless communications. Chichester, GB: Wiley.

    Book  Google Scholar 

  38. Witte, R., & Witte, J. (2017). Statistics. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  39. Wilkinson, T. A., & Jones, A. E. (1995). Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding. In 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century (Vol. 2). IEEE. https://doi.org/10.1109/VETEC.1995.504983.

  40. Davis, J. A., & Jedwab, J. (1999). Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed–Muller codes. IEEE Transactions on Information Theory, 45(7), 2397–2417. https://doi.org/10.1109/18.796380.

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen, H., & Liang, H. (2007). Combined selective mapping and binary cyclic codes for PAPR reduction in OFDM systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2007.060145

  42. Ginige, T., Rajatheva, N., & Ahmed, K. M. (2001). Dynamic spreading code selection method for PAPR reduction in OFDM-CDMA systems with 4-QAM modulation. IEEE Communications Letters. https://doi.org/10.1109/4234.957377.

  43. Hisojo, M. A., Lebrun, J., & Deneire, L. (2014). Low PAPR and spatial diversity for OFDM schemes by using L2-orthogonal CPM ST-codes with fast decoding. In 2014 IEEE Latin-America Conference on Communications (LATINCOM). Springer. https://doi.org/10.1007/s11277-013-1108-x.

  44. Erhardt, S., Kurin, T., Lurz, F., Weigel, R., & Koelpin, A. (2019). An open-source speech codec at 450 bit/s with pseudo-wideband mode. In 2019 49th European Microwave Conference (EuMC) (pp. 1048–1051). IEEE.

  45. Lin, S., & Costello, D. J. (2001). Error control coding (2nd ed.). Lebanon, IN: Prentice Hall.

    MATH  Google Scholar 

  46. Neubauer, A., Freudenberger, J., & Kuhn, V. (2007). Coding theory: Algorithms, architectures and applications. Chichester: Wiley.

    Book  Google Scholar 

  47. Tahir, B., Schwarz, S., & Markus Rupp, B. E. R. (2017). Comparison between convolutional, Turbo, LDPC, and Polar codes. In 24th international conference on telecommunications (ICT). IEEE. https://doi.org/10.1109/ICT.2017.7998249

  48. Shahbazi, A., Rezaei, A. H., Sayadiyan, A., & Mosayyebpour, S. (2010). Data transmission over GSM adaptive multi rate voice channel using speech-like symbols. In 2010 international conference on signal acquisition and processing. IEEE. https://doi.org/10.1109/ICSAP.2010.72

  49. Chae, C.-J., Shin, Y., Choi, K., Kim, K.-B., & Choi, K.-N. (2015). A privacy data leakage prevention method in P2P networks. Peer-to-Peer Networking and Applications, 9, 05. https://doi.org/10.1007/s12083-015-0371-x.

    Article  Google Scholar 

  50. Hauer, B. (2015). Data and information leakage prevention within the scope of information security. IEEE Access, 3, 2554–2565. https://doi.org/10.1109/ACCESS.2015.2506185.

    Article  Google Scholar 

  51. Lipmaa, H., Rogaway, P., & Wagner, D. (2000). CTR-mode encryption. In 1st NIST workshop on modes of operation (Vol. 39).

  52. Jonsson, J. (2003). On the security of CTR+ CBC-MAC. In Selected areas in cryptography. Springer. https://doi.org/10.1007/3-540-36492-7_7

  53. Katz, J., & Lindell, Y. (2015). Introduction to modern cryptography. Boca Raton: CRC Press.

    MATH  Google Scholar 

  54. Housley, R. (2004). Using advanced encryption standard (AES) counter mode with IPsec encapsulating security payload (ESP). Technical Specification RFC 3686, IETF. https://tools.ietf.org/html/rfc3686

  55. Morris, B., Rogaway, P., & Stegers, T. (2009). How to encipher messages on a small domain. In Advances in cryptology—CRYPTO 2009. Springer. https://doi.org/10.1007/978-3-642-03356-8_17

  56. Stefanov, E., & Shi, E. (2012). FastPRP: fast pseudo-random permutations for small domains. In IACR Cryptology ePrint Report 2012/254. https://eprint.iacr.org/2012/254.pdf

  57. Pasini, S., & Vaudenay, S. (2006). SAS-based authenticated key agreement. In Public key cryptography—PKC 2006 (pp. 395–409). Springer. https://doi.org/10.1007/11745853_26

  58. Callas, J., Johnston, A., & Zimmermann, P. (2011). ZRTP: Media path key agreement for unicast secure RTP. Technical Specification RFC 6189, IETF. https://tools.ietf.org/html/rfc6189

  59. 3GPP. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation. Technical Report TS 36.211, Release 16, 3GPP, 2020. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2425

  60. Park, J.-H., Paik, J.-H., & Lee, D.-H. (2011). Efficient implementation of AES CTR mode for a mobile environment. Journal of the KIISC, 21(5), 47–58.

    Google Scholar 

  61. Biard, L., & Noguet, D. (2008). Reed–Solomon codes for low power communications. Journal of Communications. https://doi.org/10.4304/jcm.3.2.13-21

  62. 3GPP. Universal Mobile Telecommunications System (UMTS); Multiplexing and Channel Coding (FDD). Technical Report TS 25.212, Release 15, 3GPP, 2017. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=468

  63. Wisayataksin, S. (2019). An efficient hardware architecture of Codec2 low bit-rate speech decoder. In 2019 5th international conference on engineering, applied sciences and technology (ICEAST). IEEE. https://doi.org/10.1109/ICEAST.2019.8802570

Download references

Funding

This work is supported by Grant DGA Cifre-Defense Program No. 01D17022178 DGA/DS/MRIS and AID Program No. SED0456JE75.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Krasnowski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnowski, P., Lebrun, J. & Martin, B. Introducing a Novel Data Over Voice Technique for Secure Voice Communication. Wireless Pers Commun 124, 3077–3103 (2022). https://doi.org/10.1007/s11277-022-09503-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09503-6

Keywords