Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Full Duplex-Non-Orthogonal Multiple Access for V2X Communications in 5G Millimeter Wave

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The non-orthogonal multiple access (NOMA)has emerged as a promising 5G technology as it supports ultra-low latency and massive connectivity of devices with diverse Quality of service (QoS) and transmit rates which are the key requirements for the enabling Vehicle-to-anything (V2X) communication. In this paper we investigate the performance analysis of a decentralized Full duplex non-orthogonal multiple access (FD-NOMA) model at millimeter (mm) wave frequency. The analysis has been done on both crowded urban as well as non-crowded semi-urban scenarios, the capacity expression for both this scenario has been calculated and compared. The simulation results interprets that the system provides better channel capacity with increasing NOMA power at mm-wave frequency range, number of vehicular devices and Rician factor along with a superior performance in terms of latency compared to other systems. The proposed model achieved the ultra-low latency of 16 nano seconds with the capacity of 950 Gbps for the Urban dense scenario and 990 Gbps for the semi-urban sparse scenario. The simulation results illustrate that FD-NOMA can offer noteworthy performance gains over half-duplex NOMA and orthogonal multiple access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to privacy reasons, some of the blocks are being used by the authors in subsequent research work, it is but are available from the corresponding author on reasonable request.

References

  1. Sehla, K., Nguyen, T. M. T., Pujolle, G., & Velloso, P. B. (2022). Resource allocation modes in C-V2X: FROM LTE-V2X to 5G–V2X. IEEE Internet of Things Journal, 9(11), 8291–8314. https://doi.org/10.1109/jiot.2022.3159591

    Article  Google Scholar 

  2. Maglogiannis, V., Naudts, D., Hadiwardoyo, S., van den Akker, D., Marquez-Barja, J., & Moerman, I. (2022). Experimental V2X evaluation for C-V2x and its-G5 technologies in a real-life highway environment. IEEE Transactions on Network and Service Management, 19(2), 1521–1538. https://doi.org/10.1109/tnsm.2021.3129348

    Article  Google Scholar 

  3. Sidorenko, G., Thunberg, J., Sjoberg, K., Fedorov, A., & Vinel, A. (2022). Safety of automatic emergency braking in platooning. IEEE Transactions on Vehicular Technology, 71(3), 2319–2332. https://doi.org/10.1109/tvt.2021.3138939

    Article  Google Scholar 

  4. Liu, B., Han, W., Jiang, W., Jia, D., Wang, E., Wang, J., & Qiao, C. (2022). A novel V2V-based temporary warning network for safety message dissemination in urban environments. IEEE Internet of Things Journal, 9(24), 25136–25149. https://doi.org/10.1109/jiot.2022.3195655

    Article  Google Scholar 

  5. Lv, S., & Liu, Y. (2022). PLVA: privacy-preserving and lightweight V2I authentication protocol. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6633–6639. https://doi.org/10.1109/tits.2021.3059638

    Article  Google Scholar 

  6. Naik, G., Choudhury, B., & Park, J.-M. (2019). IEEE 802.11bd & 5G NR V2X: evolution of radio access technologies for V2X communications. IEEE Access, 7, 70169–70184. https://doi.org/10.1109/access.2019.2919489

    Article  Google Scholar 

  7. Gurbilek, G., Koca, M., & Coleri, S. (2023). Blind channel estimation for DCO-OFDM based vehicular visible light communication. Physical Communication, 56, 101942. https://doi.org/10.1016/j.phycom.2022.101942

    Article  Google Scholar 

  8. Hajisami, A., Lansford, J., Dingankar, A., & Misener, J. (2022). A Tutorial on the LTE-V2X direct communication. IEEE Open Journal of Vehicular Technology, 3, 388–398. https://doi.org/10.1109/ojvt.2022.3201432

    Article  Google Scholar 

  9. Nguyen, B. C., Hoang, T. M., & Dung, L. T. (2019). Performance analysis of vehicle-to-vehicle communication with full-duplex amplify-and-forward relay over double-Rayleigh fading channels. Vehicular Communications, 19, 100166. https://doi.org/10.1016/j.vehcom.2019.100166

    Article  Google Scholar 

  10. Bogale, T. E., Wang, X., & Le, L. B. (2017). mmWave communication enabling techniques for 5G wireless systems. MmWave Massive MIMO. https://doi.org/10.1016/b978-0-12-804418-6.00009-1

    Article  Google Scholar 

  11. Fang, Y., Hong, W., & Gao, H. (2022). Analysis of mm-wave multi-stage rectifier and implementation. IEEE Transactions on Microwave Theory and Techniques, 70(10), 4491–4501. https://doi.org/10.1109/tmtt.2022.3197755

    Article  Google Scholar 

  12. Sun, S., Hu, J., Peng, Y., Pan, X., Zhao, L., & Fang, J. (2016). Support for vehicle-to-everything services based on LTE. IEEE Wireless Communications, 23(3), 4–8. https://doi.org/10.1109/mwc.2016.7498068

    Article  Google Scholar 

  13. Song, L., Li, Y., Ding, Z., & Poor, H. V. (2017). Resource management in non-orthogonal multiple access networks for 5G and beyond. IEEE Network, 31(4), 8–14. https://doi.org/10.1109/mnet.2017.1600287

    Article  Google Scholar 

  14. Singh, G., Srivastava, A., Bohara, V. A., Liu, Z., Noor-A-Rahim, Md., & Ghatak, G. (2022). Heterogeneous visible light and radio communication for improving safety message dissemination at road intersection. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17607–17619. https://doi.org/10.1109/tits.2022.3156119

    Article  Google Scholar 

  15. Li, S., Liang, W., Xu, Q., Yang, N., & Jia, K. (2022). Performance analysis of cooperative cognitive radio networks based on hybrid NOMA/OMA and best relay selection. IET Communications, 16, 2219–2239. https://doi.org/10.1049/cmu2.12476

    Article  Google Scholar 

  16. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2018). Exploiting Full/Half-Duplex User Relaying in NOMA Systems. IEEE Transactions on Communications, 66(2), 560–575. https://doi.org/10.1109/tcomm.2017.2749400

    Article  Google Scholar 

  17. Keramidi, I., Moscholios, I., Logothetis, M., & Sarigiannidis, P. (2022). Estimating the required resources in a vehicular ad Hoc network using queueing theory models. Panhellenic Conference on Electronics & amp: Telecommunications (PACET). https://doi.org/10.1109/pacet56979.2022.9976325

    Article  Google Scholar 

  18. Qin, Z., Yue, X., Liu, Y., Ding, Z., & Nallanathan, A. (2018). User association and resource allocation in unified NOMA enabled heterogeneous ultra dense networks. IEEE Communications Magazine, 56(6), 86–92. https://doi.org/10.1109/mcom.2018.1700497

    Article  Google Scholar 

  19. Shan, L., Gao, S., Chen, S., Xu, M., Zhang, F., Bao, X., & Chen, M. (2023). Energy-efficient resource allocation in NOMA-integrated V2X networks. Computer Communications, 197, 23–33. https://doi.org/10.1016/j.comcom.2022.10.005

    Article  Google Scholar 

  20. Wu, W., Zhou, F., Hu, R. Q., & Wang, B. (2020). Energy-efficient resource allocation for secure NOMA-enabled mobile edge computing networks. IEEE Transactions on Communications, 68(1), 493–505. https://doi.org/10.1109/tcomm.2019.2949994

    Article  Google Scholar 

  21. Mori, S., Mizutani, K., & Harada, H. (2023). Software-defined radio-based 5G physical layer experimental platform for highly mobile environments. IEEE Open Journal of Vehicular Technology, 4, 230–240.

    Article  Google Scholar 

  22. Bao, H., & Huo, Y. (2023). Platoon-based resource allocation in noma-integrated V2X networks. In: 2023 IEEE 23rd International Conference on Communication Technology (ICCT) IEEE 821 82

  23. Yang, Y., Hu, Y., & Gursoy, M. C. (2023). energy efficiency of RIS-assisted NOMA-based MEC networks in the finite blocklength regime. IEEE Transactions on Communications, 1, 1. https://doi.org/10.1109/tcomm.2023.3334811

    Article  Google Scholar 

  24. Li, M., Xue, K., Chen, W., & Han, Z. (2024). Secure performance of RIS-aided NOMA in cognitive V2X networks with imperfect CSI over double rayleigh fading. IEEE Transactions on Cognitive Communications and Networking, 1, 1. https://doi.org/10.1109/tccn.2024.3365704

    Article  Google Scholar 

  25. Chopra, G., Rani, S., Viriyasitavat, W., Dhiman, G., Kaur, A., & Vimal, S. (2024). UAV-assisted partial co-operative NOMA based resource allocation in C2VX and tinyml based use case scenario. IEEE Internet of Things Journal, 1, 1. https://doi.org/10.1109/jiot.2024.3351733

    Article  Google Scholar 

  26. Sun, Y., Ng, D. W. K., Ding, Z., & Schober, R. (2017). Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Transactions on Communications, 65(3), 1077–1091. https://doi.org/10.1109/tcomm.2017.2650992

    Article  Google Scholar 

  27. Elbamby, M. S., Bennis, M., Saad, W., Debbah, M., & Latva-aho, M. (2017). Resource optimization and power allocation in in-band full duplex-enabled non-orthogonal multiple access networks. IEEE Journal on Selected Areas in Communications, 35(12), 2860–2873. https://doi.org/10.1109/jsac.2017.2726218

    Article  Google Scholar 

  28. Gradshteyn, I. S., & Ryzhik, I. M. (1980). NORMS. Table of Integrals, Series, and Products. https://doi.org/10.1016/b978-0-12-294760-5.50026-x

    Article  Google Scholar 

  29. Yukalov, V. I., & Gluzman, S. (2022). Methods of Retrieving Large-Variable Exponents. Symmetry, 14(2), 332. https://doi.org/10.3390/sym14020332

    Article  Google Scholar 

  30. Freitas De Abreu, G. (2009). Jensen-cotes upper and lower bounds on the gaussian Q-function and related functions. IEEE Transactions on Communications, 57(11), 3328–3338. https://doi.org/10.1109/tcomm.2009.11.080479

    Article  Google Scholar 

  31. Liu, T., Tong, J., Yuan, J., Xi, J., Wang, H., & Zhao, L. (2022). Massive MIMO with group sic receivers and low-resolution ADCs over Rician fading channels. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/tvt.2022.3217187

    Article  Google Scholar 

  32. Crowder, M. (2011). NIST Handbook of Mathematical Functions edited by Frank W J. Olver Daniel W. Lozier Ronald F. Boisvert Charles W. Clark. International Statistical Review, 79, 131–132. https://doi.org/10.1111/j.1751-5823.2011.00134_18.x

    Article  Google Scholar 

  33. Alkheir, A. A., & Ibnkahla, M. (2013). An accurate approximation of the exponential integral function using a sum of exponentials. IEEE Communications Letters, 17(7), 1364–1367. https://doi.org/10.1109/lcomm.2013.060513.130403

    Article  Google Scholar 

  34. Chiccoli, C., Lorenzutta, S., & Maino, G. (1990). Recent results for generalized exponential integrals. Computers and Mathematics with Applications, 19(5), 21–29. https://doi.org/10.1016/0898-1221(90)90098-5

    Article  MathSciNet  Google Scholar 

  35. Chen, Y., Wang, L., Ai, Y., Jiao, B., & Hanzo, L. (2017). Performance analysis of NOMA-SM in vehicle-to-vehicle massive MIMO channels. IEEE Journal on Selected Areas in Communications, 35(12), 2653–2666. https://doi.org/10.1109/jsac.2017.2726006

    Article  Google Scholar 

  36. Olyaee, M., Eslami, M., Navaie, K., Romero-Jerez, J. M., Hashemi, H., Haghighat, J., & Bahmanpour, M. (2023). The effect of sand and dust storms (SDSs) and rain on the performance of cellular networks in the millimeter wave band. IEEE Access, 11, 69252–69262.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Abhinav Kumar Singh and Bikash Chandra Sahana. The first draft of the manuscript was written by Abhinav Kumar Singh and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Abhinav Kumar Singh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Sahana, B.C. Full Duplex-Non-Orthogonal Multiple Access for V2X Communications in 5G Millimeter Wave. Wireless Pers Commun 136, 1825–1848 (2024). https://doi.org/10.1007/s11277-024-11364-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11364-0

Keywords