Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Energy Efficient Optimized Sleep Scheduling Routing Protocol for Enhancement of MANET Lifetime

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Mobile Ad hoc Network (MANET) is an infrastructure-less network of mobile nodes which used in military, rescue operations, disaster relief, and rural areas for communications. To process the data packets, MANET nodes consume a lot of energy during real time data transmission. The conventional protocol selects the random route path in the network. Due to overhead in the random route path the power consumptions may exhaust the energy of nodes which causes the communication delay or may path failure. To address these issues an optimized energy efficient routing protocol could be used which prevents excessive consumption of node energy and enhances the network lifespan. In our research work, a novel nature-inspired Energy Efficient Optimized Sleep Scheduling (EEOSS) protocol is proposed to enhance the effectiveness and increase lifetime of ad hoc network. EEOSS protocol is the hybridization of ad hoc on-demand multi-path distance vector (AOMDV), Ant colony optimization (ACO), Particle swarm optimization (PSO) and sleep scheduling (SS) algorithms. AOMDV selects the multiple paths for data transmission whereas, ACO and PSO are used to identify the optimum route path based on number of nodes, packet size and node speed. To save the energy of nodes the SS algorithm puts nodes into sleep state when nodes are not participating actively in the network. The suggested protocol is compared experimentally with other existing routing protocols and measures performance based on throughput, energy consumption, end-to-end delay (E2ED), and network lifetime. The experiments are simulated on NS 2.35 and the results find that the EEOSS protocol has 12% improvement in throughput, 18% improvement in network lifetime, 12% improvement in E2ED and 9% improvement for energy consumption as compare to other state of art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available, upon reasonable request.

References

  1. S. Dodke, P. B. Mane, and M. S. Vanjale, 2017 “A survey on energy efficient routing protocol for MANET,” Proc. 2016 2nd Int. Conf. Appl. Theor. Comput. Commun. Technol. iCATccT 2016, pp. 160–164, https://doi.org/10.1109/ICATCCT.2016.7911984.

  2. Bang, A. O., & Ramteke, P. L. (2019). MANET : History, Challenges And Applications. Int. J. Appl. or Innov. Eng. Manag., 2(9), 249–251.

    Google Scholar 

  3. A. Bakar and R. Ismail, 2012 “Ensuring Data Privacy and Security in MANET: Case in Emergency Rescue Mission,” Proc., 45, (Icikm) 165–169.

  4. Keshari, S. K., Kansal, V., Kumar, S., & Bansal, P. (2023). An intelligent energy efficient optimized approach to control the traffic flow in Software-Defined IoT networks. Sustainable Energy Technologies and Assessments, 55, 102952.

    Article  Google Scholar 

  5. Mishra, A., Singh, S., & Tripathi, A. K. (2019). Comparison of Manet Routing Protocols. International Journal of Computer Science and Mobile Computing, 8(2), 67–74.

    Google Scholar 

  6. S. Shruthi, (2017) “Proactive routing protocols for a MANET-A review,” Proc. Int. Conf. IoT Soc. Mobile, Anal. Cloud, I-SMAC 2017, pp. 821–827, https://doi.org/10.1109/I-SMAC.2017.8058294.

  7. Kaur, H., Sahni, V., & Bala, M. (2013). “A SURVEY OF REACTIVE, PROACTIVE AND HYBRID ROUTING PROTOCOLs in MANET: A Review.” Int J. Comput. Sci. Inf. Technol., 4(3), 498–500.

    Google Scholar 

  8. Shirly, G., & Kumar, N. (2018). A survey on energy efficiency in mobile ad hoc networks. International Journal of Engineering & Technology, 7(2.21), 382–385.

    Article  Google Scholar 

  9. Safdar, M., Khan, I. A., Ullah, F., Khan, F., & Jan, S. R. (2016). Comparative Study of Routing Protocols in Mobile ADHOC Networks. International Journal of Computer Science Trends and Technology, 4(2), 264–275.

    Google Scholar 

  10. Abdulleh, M. N., Yussof, S., & Jassim, H. S. (2015). comparative study of proactive, reactive and geographical MANET routing protocols. Communications and Network, 07(02), 125–137. https://doi.org/10.4236/cn.2015.72012

    Article  Google Scholar 

  11. A. Arya and J. Singh, 2014 “Comparative Study of AODV, DSDV and DSR Routing Protocols in Wireless Sensor Network Using NS-2 Simulator,” 5 (4): 5053–5056.

  12. A. Kurniawan, P. Kristalina, and M. Z. S. Hadi, 2020 “Performance Analysis of Routing Protocols AODV, OLSR and DSDV on MANET using NS3,” IES 2020—Int. Electron. Symp. Role Auton. Intell. Syst. Hum. Life Comf., pp. 199–206, https://doi.org/10.1109/IES50839.2020.9231690.

  13. Aggarwal, Ip., & Garg, E. P. (2016). AOMDV Protocols in MANETS : A Review. Int. J. Adv. Res. Comput. Sci. Technol. (IJARCST ), 4(2), 32–34.

    Google Scholar 

  14. Wang, J., Osagie, E., Thulasiraman, P., & Thulasiram, R. K. (2009). HOPNET: A hybrid ant colony optimization routing algorithm for mobile ad hoc network. Ad Hoc Networks, 7(4), 690–705. https://doi.org/10.1016/j.adhoc.2008.06.001

    Article  Google Scholar 

  15. Alam, M., Khan, A. H., & Khan, I. R. (2016). Swarm Intelligence in MANETs: A Survey. Int. J. Emerg. Res. Manag. & Technology, 9359(5), 141–150. https://doi.org/10.6084/m9.figshare.14309384

    Article  Google Scholar 

  16. Keshari, S. K., Kansal, V., & Kumar, S. (2021). A systematic review of quality of services (QoS) in software defined networking (SDN). Wireless Personal Communications, 116(3), 2593–2614.

    Article  Google Scholar 

  17. R. P. Salim and R. Rajesh, (2016) “A survey: Optimal node routing strategies in MANET,” Proc. 2016 Int. Conf. Data Min. Adv. Comput. SAPIENCE 2016, 7 (5): 260–267, https://doi.org/10.1109/SAPIENCE.2016.7684111.

  18. Selvi, V., & Umarani, D. R. (2010). Comparative analysis of ant colony and particle swarm optimization techniques. International Journal of Computers and Applications, 5(4), 1–6. https://doi.org/10.5120/908-1286

    Article  Google Scholar 

  19. Keshari, S. K., Kansal, V., & Kumar, S. (2021). An intelligent way for optimal controller placements in software-defined–IoT networks for smart cities. Computers & Industrial Engineering, 162, 107667.

    Article  Google Scholar 

  20. Azzuhri, S. R., Mhd Noor, M. B., Jamaludin, J., Ahmedy, I., & Md Noor, R. (2018). Towards a Better Approach for Link Breaks Detection and Route Repairs Strategy in AODV Protocol. Wireless Communications and Mobile Computing, 2018, 1–9. https://doi.org/10.1155/2018/9029785

    Article  Google Scholar 

  21. Mai, Y., Bai, Y., & Wang, N. (2017). Performance Comparison and Evaluation of the Routing Protocols for MANETs Using NS3. Journal of Electrical Engineering, 5(4), 187–195. https://doi.org/10.17265/2328-2223/2017.04.003

    Article  Google Scholar 

  22. B. Kumari and D. Vydeki, (2017) “Performance analysis of MANET in the presence of malicious nodes,” 2017 Int. Conf. Nextgen Electron. Technol. Silicon to Software, ICNETS2 2017, pp. 79–83, https://doi.org/10.1109/ICNETS2.2017.8067902.

  23. Razouqi, Q., Boushehri, A., & Gaballah, M., Performance analysis for diverse simulation scenarios for DSDV, DSR and AODV MANET routing protocols, ICENCO 2017—13th Int. Comput. Eng. Conf. Boundless Smart Soc., vol. 2018-Janua, pp. 30–35, 2018, https://doi.org/10.1109/ICENCO.2017.8289758.

  24. Muthukumaran, N. (2017). Analyzing Throughput of MANET with Reduced Packet Loss. Wireless Personal Communications, 97(1), 565–578. https://doi.org/10.1007/s11277-017-4520-9

    Article  Google Scholar 

  25. Ramesh, P., & Devapriya, M. (2018). An optimized energy efficient route selection algorithm for mobile ad hoc networks based on loa. Int. J. Eng. Adv. Technol., 8(2), 298–304.

    Google Scholar 

  26. Li, J., Wang, M., Zhu, P., Wang, D., & You, X. (2021). Highly Reliable Fuzzy-Logic-Assisted AODV Routing Algorithm for Mobile Ad Hoc Networks. Sensors (Basel), 21(17), 5965. https://doi.org/10.3390/s21175965

    Article  Google Scholar 

  27. Mohammed, A. S., Basha, S., Asha, P. N., & Venkatachalam, K. (2020). FCO—Fuzzy constraints applied Cluster Optimization technique for Wireless AdHoc Networks. Computer Communications, 154(2019), 501–508. https://doi.org/10.1016/j.comcom.2020.02.079

    Article  Google Scholar 

  28. S. Gangwar and P. Kumar, “Introduction of various Soft Computing Techniques in Mobile Ad-hoc network,” 2017. [Online]. Available: http://www.ijser.org

  29. Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76(9), 7333–7373. https://doi.org/10.1007/s11227-020-03166-5

    Article  Google Scholar 

  30. Alinci, M., Inaba, T., Elmazi, D., Spaho, E., Kolici, V., and Barolli, L., (2016) Improving Node Security in MANET Clusters: A Comparison Study of Two Fuzzy-Based Systems, In: NBiS 2016–19th Int. Conf. Network-Based Inf. Syst., pp. 355–363, https://doi.org/10.1109/NBiS.2016.40.

  31. Joshi, S. S., & Biradar, S. R. (2016). Communication Framework for Jointly Addressing Issues of Routing Overhead and Energy Drainage in MANET. Procedia Computer Science, 89, 57–63. https://doi.org/10.1016/j.procs.2016.06.009

    Article  Google Scholar 

  32. Shashidhara, D. N., Chandrappa, D. N., & Puttamadappa, C. (2020). A Novel Location Aware Content Prefetching Technique for Mobile Adhoc Network. Procedia Computer Science, 171(2019), 1970–1978. https://doi.org/10.1016/j.procs.2020.04.211

    Article  Google Scholar 

  33. J. Gautam, B. L. Fathima, K. S. Sangeetha, and P. M. M. Muzammil, “Pak . J . Biotechnol . Vol . 13 special issue II ( International Conference on Engineering and Technology Systems ( ICET ’ 16 ) Pp . 57 - 61 ( 2016 ) ENERGY RESOURCE OPTIMIZATION IN WIRELESS AD-HOC NETWORK USING DYNAMIC STATES Pak . J . Biotechnol . Vol .,” ICET, vol. 13, no. Ii, pp. 57–61, 2016.

  34. Tabatabaei, S. (2021). A new routing protocol for energy optimization in mobile ad hoc networks using the cuckoo optimization and the topsis multi-criteria algorithm. Cybernetics and Systems, 52(6), 477–497. https://doi.org/10.1080/01969722.2021.1899597

    Article  Google Scholar 

  35. Alghamdi, S. A. (2022). Cuckoo energy-efficient load-balancing on-demand multipath routing protocol. Arabian Journal for Science and Engineering, 47(2), 1321–1335. https://doi.org/10.1007/s13369-021-05841-y

    Article  MathSciNet  Google Scholar 

  36. Suresh Kumar, R., Manimegalai, P., Vasanth Raj, P. T., Dhanagopal, R., & Johnson Santhosh, A. (2022). Cluster head selection and energy efficient multicast routing protocol-based optimal route selection for mobile ad hoc networks. Wireless Communications and Mobile Computing, 2022, 1–12. https://doi.org/10.1155/2022/5318136

    Article  Google Scholar 

  37. Sarhan, S., & Sarhan, S. (2021). Elephant herding optimization ad hoc on-demand multipath distance vector routing protocol for MANET. IEEE Access, 9, 39489–39499. https://doi.org/10.1109/ACCESS.2021.3065288

    Article  Google Scholar 

  38. Nivetha, S. K., & Asokan, R. (2016). Energy efficient multiconstrained optimization using hybrid ACO and GA in MANET routing. Turkish Journal of Electrical Engineering and Computer Sciences, 24(5), 3698–3713. https://doi.org/10.3906/elk-1404-413

    Article  Google Scholar 

  39. Agbaria, A., Gershinsky, G., Naaman, N., Shagin, K., (2009) Extrapolation-based and QoS-aware real-time communication in wireless mobile ad hoc networks, IFIP Med-Hoc-Net’09 8th IFIP Annu. Mediterr. Ad Hoc Netw. Work, pp. 21–26. https://doi.org/10.1109/MEDHOCNET.2009.5205201.

  40. Sun, Z., Wei, M., Zhang, Z., & Qu, G. (2019). Secure routing protocol based on multi-objective Ant-colony-optimization for wireless sensor networks. Applied Soft Computing, 77, 366–375. https://doi.org/10.1016/j.asoc.2019.01.034

    Article  Google Scholar 

  41. Janakiraman, S. (2018). A hybrid ant colony and artificial bee colony optimization algorithm-based cluster head selection for IoT. Procedia Computer Science, 143, 360–366. https://doi.org/10.1016/j.procs.2018.10.407

    Article  Google Scholar 

  42. Jubair, M. A., et al. (2019). Bat optimized link state routing protocol for energy-aware mobile ad-hoc networks. Symmetry (Basel), 11(11), 1409. https://doi.org/10.3390/sym11111409

    Article  Google Scholar 

  43. Zhang, H., Wang, X., Memarmoshrefi, P., & Hogrefe, D. (2017). A survey of ant colony optimization based routing protocols for mobile ad hoc networks. IEEE Access, 5, 24139–24161. https://doi.org/10.1109/ACCESS.2017.2762472

    Article  Google Scholar 

  44. Shi, J., Habib, M., & Yan, H. (2020). A review paper on different application of genetic algorithm for mobile ad-hoc network (MANET). International Journal of Online and Biomedical Engineering, 16(5), 119–139. https://doi.org/10.3991/IJOE.V16I05.13325

    Article  Google Scholar 

  45. Prasad, A. Y., & Rayanki, B. (2020). A generic algorithmic protocol approaches to improve network life time and energy efficient using combined genetic algorithm with simulated annealing in MANET. International Journal of Intelligent Unmanned Systems, 8(1), 23–42. https://doi.org/10.1108/IJIUS-02-2019-0011

    Article  Google Scholar 

  46. Ahmad, M., Ikram, A. A., Lela, R., Wahid, I., & Ulla, R. (2017). Honey bee algorithm–based efficient cluster formation and optimization scheme in mobile ad hoc networks. International Journal of Distributed Sensor Networks, 13(6), 1550147717716815. https://doi.org/10.1177/1550147717716815

    Article  Google Scholar 

  47. Parwekar, P., Rodda, S., & Vani Mounika, S. (2018). Comparison between genetic algorithm and PSO for wireless sensor networks. Smart Innov. Syst. Technol.,Vol. 77 (pp. 403–411). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-5544-7_39

    Chapter  Google Scholar 

  48. Srivastava, A., Mishra, A., & Upadhyay, S. (2014). A conceptual overview of energy consumption based routing protocol - ECBR. International Journal of Computers and Applications, 92(3), 18–22. https://doi.org/10.5120/15990-4942

    Article  Google Scholar 

  49. Rupérez Cañas, D., Sandoval Orozco, A. L., García Villalba, L. J., & Hong, P. S. (2013). Hybrid ACO routing protocol for mobile Ad hoc networks. International Journal of Distributed Sensor Networks, 9(5), 265485. https://doi.org/10.1155/2013/265485

    Article  Google Scholar 

  50. H. Rani and J. Singh, “Analysis of Swarm Intelligence Optimization Techniques Used in MANETs: A Survey,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 5, pp. 636–639, 2017, [Online]. Available: https://search.proquest.com/docview/1912636181?accountid=199402

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Veepin Kumar: Conception and design of the work, Data collection and analysis, study of simulation tool, written the research paper, interpretation of results. Dr. Sanjay Singla: Study conception, supervision, and investigation on challenges and draft manuscript preparation. Shalika: Conception and design the work and overall direction and planning. Dr. Surendra Kumar Keshari: Direction and Conception of the work. Sanjeev Kumar: Analysis of the result and conception of work. All the authors read and approved the final version.

Corresponding author

Correspondence to Veepin Kumar.

Ethics declarations

Conflict of interest

The authors have not disclosed any Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Singla, S., Arora, S. et al. Energy Efficient Optimized Sleep Scheduling Routing Protocol for Enhancement of MANET Lifetime. Wireless Pers Commun 136, 1849–1877 (2024). https://doi.org/10.1007/s11277-024-11365-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11365-z

Keywords