Abstract
With advent of Internet of Things (IoT) an exponential growth has been observed in recent times towards the use of fifth generation (5G) network to share data among anything and even everything around connected in billions. The exchange of large amount of data by these devices or objects accumulates network overhead in the IoT infrastructure in terms of energy, routing, battery charge, data rate, packet delivery/loss rate, availability, interoperability, congestion, scalability, cost and security. Hence it is highly essential to project optimal solutions to uphold thereby the quality of service (QoS) in available network. This study provides a thorough literature survey of diverse optimization techniques in IoT aided wireless networks like Mobile Ad-hoc NETwork (MANET) driven Internet of Mobile Things (IoMobT), Vehicular Ad-hoc NETwork (VANET) driven Internet of Vehicles (IoV), Flying Ad-hoc NETwork (FANET) driven Internet of Flying Things (IoF), Robot Ad-hoc NETwork (RANET) enabled Internet of Robots (IoR), Ship Ad-hoc NETwork (SANET) driven Internet of Ships (IoS) and Underwater or Underground Ad-hoc NETwork (UANET) in Internet of Underwater or Underground Things (IoU). It categorizes papers based on the issues resolved by the examined works and optimization strategies employed and then it contrasts and condenses the salient characteristics of each kind of publication. It also even sketches a preview of IoT along with its evolving trends and cutting-edge-solutions for improving QoS. Our survey attempts to give readers a better grasp of the principles behind various computing models and to examine QoS network optimization strategies across a range of IoT models.
Similar content being viewed by others
Data availability
Our manuscript has no data associated.
Abbreviations
- 3G/4G:
-
3Rd Generation/4th Generation
- 6LoWPAN:
-
IPv6 Low power Personal Area Networks
- AAO:
-
Artificial Algae Optimization
- ABC:
-
Artificial Bee Colony
- ACO:
-
Ant Colony Optimization
- ACS:
-
Ant Colony System
- AEDE:
-
Adaptive EDE
- AFSO:
-
Artificial Fish Swarm Optimization
- AFSA:
-
Artificial Fish Schooling Algorithm
- AGTO:
-
Artificial Gorilla Troops Optimizer
- AGV:
-
Automated Guided Vehicles
- AHP:
-
Analytic Hierarchy Process
- AHO:
-
Artificial Hummingbird Optimization
- ALO:
-
Ant Lion Optimizer
- ANN:
-
Artificial Neural Network
- AO:
-
Aquila Optimizer
- AODV:
-
Ad hoc On-Demand Distance Vector
- ARES:
-
Ant based energy Efficient routing algorithm for Sensor network
- ASIoT:
-
Application Specicific IoT
- AUV:
-
Autonomous Underwater Vehicles
- AVO:
-
African Vultures Optimization
- AWOA:
-
Aquila optimizer–Whale Optimization Algorithm
- BFA:
-
Bacterial Foraging Algorithm
- BFO:
-
Bacterial Foraging Optimization
- BLE:
-
Bluetooth Low Energy
- BOA:
-
Butterfly Optimisation Algorithm
- BS:
-
Base Station
- BSO:
-
Bat Swarm Optimisation
- CAS:
-
Chaotic Ant Swarm
- CatSO:
-
Cat Swarm Optimisation
- CAVDO:
-
Clustering Algorithm for IoV based on Dragonfly Optimizer
- CBCC-RDG3:
-
Contribution-Based Co-operative Co-evolution Recursive Differential Grouping
- CH:
-
Cluster Head
- ChSO:
-
Chicken Swarm Optimization
- CI:
-
Computational Intelligence
- CL:
-
Cloud Logistics
- CLPSO:
-
Comprehensive Learning Particle Swarm Optimization
- CoAP:
-
Constrained Application Protocol
- CoRE:
-
Constrained RESTful Environments
- CP:
-
Charged Particle
- CS-HC:
-
Cuckoo Search with Hill Climbing
- CSO:
-
Cuckoo Search Optimization
- CSS:
-
Charged System Search
- DE:
-
Differential Evolution
- DECADE:
-
Distributed Emergent Cooperation through ADaptive Evolution
- DEEM:
-
Differential Evolution Encoding Mechanism
- DEM:
-
Differential Evolution Method
- DEVIPS:
-
Differential Evolution algorithm with Variable Population Size based on a mutation strategy pool
- DEVIPSK:
-
Differential Evolution algorithm with Varying Population Size created on a mutation tactic Pool initialized by K-Means
- DGSC-DECC:
-
Differential Grouping with Spectral Clustering-Differential Evolution Co-operative Co-evolution
- DIAMoND:
-
Distributed Intrusion/Anomaly Monitoring for Nonparametric Detection
- DOA:
-
Dragonfly Optimization Algorithm
- DPRA:
-
Delayed Power Ramping Algorithm
- E. Coli:
-
Escherichia Coli
- EA:
-
Evolutionary Algorithm
- EADE:
-
Enhanced Adaptive Differential Evolution
- EDE:
-
Enhanced Differential Evolution
- EMA:
-
Exchange Market Algorithm
- ENN:
-
Evolutionary Neural Network
- EQSA:
-
Energy-centered and QoS-aware Services selection Algorithm
- ESO:
-
Elephant Search/herd Optimization
- ESS:
-
Efficient Scheduling Scheme
- FANET:
-
Flying Ad-hoc NETwork
- FCFS:
-
First-Come First-Served
- fGA:
-
Flexible Genetic Algorithm
- FH-ACO:
-
Fuzzy Heuristic Ant Colony Optimization
- FIS:
-
Fuzzy Inference System
- FL:
-
Fuzzy Logic
- FO:
-
Firefly Optimization
- FRA:
-
Firefly Routing Algorithm
- GA:
-
Genetic Algorithm
- GASS:
-
Genetic algorithm and simulated Annealing algorithm for edge Server Selection
- GBCO:
-
Genetic Bee Colony Optimization (GA + ABC)
- GOA:
-
Grasshoppers’ Optimization Algorithm
- GP:
-
Genetic Programming
- GROBO:
-
Grasshopper Optimization-based Bi-target Optimization
- GSA:
-
Greedy and Simulated-annealing Algorithms
- GSM:
-
Global System for Mobile Communication
- GWOA:
-
Gray Wolf Optimization Algorithm
- GwSO:
-
Glow-worm Swarm Optimisation
- HBO:
-
Honey Bee Optimisation
- HFLPSO:
-
Hybrid Fuzzy Levy flight Particle Swarm Optimization
- HOLA:
-
Heuristic and Opportunistic Link Selection Algorithm
- HONIED:
-
Hive Oversight for Network Intrusion Early Warning using DIAMoND
- HS:
-
Harmony Search
- iASEF:
-
Integrated Atom Swarm and Electromagnetic Force
- IBFO:
-
Improved Bacterial Foraging Optimization
- IETF:
-
Internet Engineering Task Force
- IGAROT:
-
Improved Genetic Algorithm-based Route Optimization Technique
- IIoT:
-
Internet of Industrial Things
- iMOPSE:
-
Intelligent Multi Objective Project Scheduling Environment
- IoAT:
-
Internet of Animal Things
- IoAuT:
-
Internet of Autonomous-Things
- IoB:
-
Internet of Bins
- IoBeauT:
-
Internet of Beautiful Things
- IoBioT:
-
Internet of Biometric Things
- IoBLT:
-
Internet of Battery-less Things
- IoBT:
-
Internet of Battle (field) Things
- IoET:
-
Internet of Every Thing
- IoFT:
-
Internet of Flying Things
- IoMiT:
-
Internet of Military Things
- IoMobT:
-
Internet of Mobile Things
- IoMT:
-
Internet of Medical Things
- IoNT:
-
Internet of Nano Things
- IoR:
-
Internet of Robots
- IoRT:
-
Internet of Robotic Things
- IoS:
-
Internet of Ships
- IoT:
-
Internet of Things
- IoTFS:
-
IoT-Fog System
- IoUGT:
-
Internet of Underground Things
- IoUWT:
-
Internet of Underwater Things
- IoV:
-
Internet of Vehicles
- IoWT:
-
Internet of Waste Things
- IPSO:
-
Improved Particle Swam Optimization
- IPv6:
-
Internet Protocol version 6
- ISATOPSIS:
-
Improved Simulated Annealing Technique for Order Preference by Similarity to the Ideal Solution
- ITS:
-
Intelligent Transport System
- IWD:
-
Intelligent Water Drop
- IWDRA:
-
Intelligent Water Drop Routing Algorithm
- JADE:
-
J Adaptive Differential Evolution
- JGGA:
-
Jumping Genes Genetic Algorithm
- JSO:
-
Jellyfish Search Optimisation
- KNN:
-
K Nearest Neighbors
- LF-DCSO:
-
Lévy Flight-based Discrete Cuckoo Search Optimization
- LGSO:
-
Large Scale Global Optimization
- LISP:
-
List Processing
- LOAD:
-
6LoWPAN Ad-hoc on-demand Distance vector
- LS:
-
Local Search
- LSA:
-
Lightning Search Algorithm
- LTE:
-
Long Term Evolution
- M2M:
-
Machine-to-Machine
- MA:
-
Memetic Algorithms
- MANET:
-
Mobile Ad-hoc NETwork
- MDML-RP:
-
Metaheuristic Driven Machine Learning Routing Protocol
- MEC:
-
Mobile Edge Computing
- MFOA:
-
Moth Flame Optimization Algorithm
- NFV:
-
Network Function Virtualization
- MILP:
-
Mixed Integer Linear Programming
- mIoT:
-
Massive IoT
- MLOAD:
-
Multi-Path LOAD
- MLSHADE-SPA:
-
Memetic Linear population Size reduction and Semi-Parameter Adaptation
- moFIS-BFO:
-
Multiobjective Fuzzy Inference System Bacterial Foraging Optimization
- MOCAS:
-
Multi-Objective Chaotic Ant Swarm
- MOCAS:
-
Multi-Objective Chaotic Ant Swarm
- MOCSA:
-
Multi-Objective Cuckoo Search Algorithm
- MOGWO:
-
Multi-Objective Grey Wolf Optimizer
- MOPSO:
-
Multi-Objective Particle Swarm Optimization
- MOR4WSN:
-
Multi-Objective Routing for WSN
- MS-RCPSP:
-
Multi Skill Resource-Constrained Project Scheduling Problem
- MTS:
-
Modified Tabu Search
- NJNP:
-
Nearest-Job-Next-with-Preemption
- NSGA-II:
-
Non-dominated Sorting Genetic Algorithm II
- NTS:
-
Novel Tabu Search
- oppIoT:
-
Opportunistic IoT
- OSEAP:
-
Optimal Secured Energy Aware Protocol
- PenguinSO:
-
Penguin Search Optimisation
- PID:
-
Proportional-Integrator-Differentiator / proportional-plus-integral-plus-derivative
- PIO:
-
Pigeon Inspired Optimisation
- PSO:
-
Particle Swarm Optimization
- PSO-LSA:
-
Particle Swarm Optimization with Lightning Search Algorithm
- PUF:
-
Physical Unclonable Function
- QoS:
-
Quality of Service
- QPSO:
-
Quantum Particle Swarm Optimization
- QPSO:
-
Quantum stirred PSO
- RA:
-
Resource Allocation
- RACH:
-
Random Access Channel
- RACH:
-
Random-Access Channel
- RANET:
-
Robot Ad-hoc NETwork
- RF:
-
Radio Frequency
- RFID:
-
Radio Frequency Identification
- RPL:
-
Routing Protocol for Low-Power and Lossy Networks
- RREQ:
-
Route REQuest
- RSPT:
-
Robust Shortest Path Tree
- RW-DCSO:
-
Random Walk-based Discrete Cuckoo Search Optimization
- SA:
-
Simulated Annealing
- SA-LSA:
-
Simulated Annealing with Lightning Search Algorithm
- SANET:
-
Ship Ad-hoc NETwork
- SATOPSIS:
-
Simulated Annealing Technique for Order Preference by Similarity to the Ideal Solution
- SAWS:
-
Simulated Annealing Weighted Sum
- SBA:
-
Scenario-Based heuristic Algorithm
- SDN:
-
Software Defined Networking
- SEAP:
-
Secure Energy Aware-routing Protocol
- SGN:
-
Stochastic Game Net
- SSO:
-
Salp Swarm Optimisation
- TLBO:
-
Teacher Learning Based Optimisation
- TS:
-
Tabu Search
- TSFIS-GWO:
-
Takagi–Sugeno Fuzzy Inference System Grey Wolf Optimizer
- TSFM:
-
Three-Stage Fuzzy Metaheuristic
- UANET:
-
Underwater Ad-hoc NETwork
- UAV:
-
Unmanned/Uncrewed Aerial Vehicles
- UgANET:
-
Underground Ad-hoc NETwork
- UwANET:
-
Underwater Ad-hoc NETwork
- V2I:
-
Vehicle to Infrastructure
- V2V:
-
Vehicle to Vehicle
- VANET:
-
Vehicular Ad-hoc NETwork
- VCCA:
-
Variable Categorized Clustering Algorithm
- VLGA:
-
Variable-Length Genetic Algorithm
- VNF:
-
Virtual Network Function
- WBAN:
-
Wearable Body area network
- Wi-Fi:
-
Wireless Fidelity
- WLAN:
-
Wireless Local Area Network
- WMN:
-
Wireless Mesh Networks
- WOA:
-
Whale Optimization Algorithm
- WRSN:
-
Wireless Rechargeable Sensor Network
- WSN:
-
Wireless Sensor Network
- WSN-RFID:
-
Wireless Sensor Network Radio Frequency Identification
- WUSN:
-
Wireless Underwater/Underground Sensor Network (WUwSN/WUgSN)
- ZigBee:
-
Zonal Intercommunication Global-standard
- ZRP:
-
Zone Routing Protocol
References
Srinidhi, N. N., Kumar, S. D., & Venugopal, K. R. (2019). Network optimizations in the internet of things: A review. Engineering Science and Technology, an International Journal, 22(1), 1–21.
Subash, K., Ramya, D. J., & Arockiam, L. (2019). Quality of Service in the Internet of Things (IoT)–A Survey. TIRUCHIRAPPALLI-620 002, TAMIL NADU, INDIA
Hussain, S. A., Yusof, K. M., Hussain, S. M., & Singh, A. V. (2019, February). A review of quality of service issues in internet of vehicles (IoV). In 2019 Amity international conference on artificial intelligence (AICAI) (pp. 380–383). IEEE.
Alhasan, A., Audah, L., Alhadithi, O. S., & Alwan, M. H. (2019). Quality of service mechanisms in internet of things: A comprehensive survey. Journal of Advanced Research in Dynamical and Control Systems, 11(2), 858–875.
Chowdhury, A., & Raut, S. A. (2018). A survey study on internet of things resource management. Journal of Network and Computer Applications, 120, 42–60.
Chenna, K. B., & Srinivasan, C. K. (2018, June). Survey on optimization in IoT. In 2018 second international conference on intelligent computing and control systems (ICICCS) (pp. 1924–1928). IEEE
Sun, W., Tang, M., Zhang, L., Huo, Z., & Shu, L. (2020). A survey of using swarm intelligence algorithms in IoT. Sensors, 20(5), 1420.
Shah, A. S., Nasir, H., Fayaz, M., Lajis, A., & Shah, A. (2019). A review on energy consumption optimization techniques in IoT based smart building environments. Information, 10(3), 108.
Qu, Z., Wang, Y., Sun, L., Peng, D., & Li, Z. (2020). Study QoS optimization and energy saving techniques in cloud, fog, edge, and IoT. Complexity, 2020, 1–16.
Begović, M., Čaušević, S., & Avdagić-Golub, E. (2021). QoS management in software defined networks For IoT environment: An overview. International Journal for Quality Research, 15(1), 171–188. https://doi.org/10.24874/IJQR15.01-10
Srivastava, A., & Kumar, A. (2022). A review of network optimization on the internet of things. Innovations in Computer Science and Engineering: Proceedings of the Ninth ICICSE, 2021, 49–57.
Panigrahy, S. K., & Emany, H. (2023). A survey and tutorial on network optimization for intelligent transport system using the internet of vehicles. Sensors, 23(1), 555.
Mokabberi, A., Iranmehr, A., & Golsorkhtabaramiri, M. (2023, February). A review of energy-efficient QoS-aware composition in the internet of things. In 2023 8th international conference on technology and energy management (ICTEM) (pp. 1–6). IEEE
Charde, P., & Lonkar, B. B. (2023, July). An empirical review of machine learning models for energy optimizations in IoT networks. In 2023 14th international conference on computing communication and networking technologies (ICCCNT) (pp. 1–7). IEEE
Rostami, M., & Goli-Bidgoli, S. (2024). An overview of QoS-aware load balancing techniques in SDN-based IoT networks. Journal of Cloud Computing, 13(1), 89.
Zainaddin, D. A., Hanapi, Z. M., Othman, M., Ahmad Zukarnain, Z., & Abdullah, M. D. H. (2024). Recent trends and future directions of congestion management strategies for routing in IoT-based wireless sensor network: a thematic review. Wireless Networks, 30(3), 1–45.
Ashton, K. (2019). That internet of things thing. RFiD J., 22(7), 97–114.
Bellavista, P., Cardone, G., Corradi, A., & Foschini, L. (2013). Convergence of MANET and WSN in IoT urban scenarios. IEEE Sensors Journal, 13(10), 3558–3567.
Ang, K. L. M., & Seng, J. K. P. (2019). Application Specific Internet of Things (ASIoTs): Taxonomy, Applications, Use Case and Future Directions. IEEE Access, 7, 56577–56590. https://doi.org/10.1109/ACCESS.2019.2907793
Kott, A., Swami, A., & West, B. J. (2016). The internet of battle things. Computer, 49(12), 70–75.
Stephen Russell and Tarek Abdelzaher. (2018). The internet of battlefield things: The next generation of command, control, communications and intelligence (C3I) decision-making. milcom track 5––Big data and machine learning
Vishnu, S., Ramson, S. J., & Jegan, R. (2020, March). Internet of medical things (IoMT)-An overview. In 2020 5th international conference on devices, circuits and systems (ICDCS) (pp. 101–104). IEEE
Benaissa, S., Plets, D., Tanghe, E., Trogh, J., Martens, L., Vandaele, L., Verloock, L., Tuyttens, F. A. M., Sonck, B., & Joseph, W. (2017). Internet of animals: characterisation of LoRa sub-GHz off-body wireless channel in dairy barns. Electronics Letters, 53(18), 12811283.
Medvedev, A., Fedchenkov, P., Zaslavsky, A., Anagnostopoulos, T., & Khoruzhnikov, S. (2015). Waste management as an IoT-enabled service in smart cities. in Proc. Int. Conf. Next Gener. Wired/Wireless Netw. (pp. 104_115)
Namahoot, C. S., Brückner, M., Kim, Y., & Pinijkitcharoenkul, S. (Mar 2020)Cost-effective waste collection system based on the internet of wasted things (IoWT). https://doi.org/10.1007/978-981-15-2612-1_26, In book: International conference on communication, computing and electronics systems (pp.277–286)
Domingo, M. C. (2012). An overview of the internet of underwater things. Journal of Network and Computer Applications, 35(6), 18791890.
Kao, C.-C., Lin, Y.-S., Wu, G.-D., & Huang, C.-J. (2017). A comprehensive study on the Internet of underwater things: Applications, challenges, and channel models. Sensors, 17(7), 1477.
Chinonso Okereke, Nur Haliza, Abdul Wahab, Mohd Murtadha Mohamad, S H Zaleha. Autonomous underwater vehicle in internet of underwater things: A survey. Conference paper , https://www.researchgate.net/publication/349427247, Feb 2021
Salam, A., Raza, U., Salam, A., & Raza, U. (2020). Current advances in internet of underground things. Signals in the Soil: Developments in Internet of Underground Things. https://doi.org/10.1007/978-3-030-50861-6
Akyildiz, I. F., & Jornet, J. M. (2010). The Internet of nano-things. IEEE Wireless Commun., 17(6), 5863.
Akhtar, N., & Perwej, Y. (2020). The internet of nano things (IoNT) existing state and future prospects. GSC Advanced Research and Reviews, 05(02), 131–150.
Althagafi, A. M., & Azim, M. M. (Dec, 2019) Internet of Beautiful Things (IoBT): Towards improving human’s behaviors. https://doi.org/10.1109/GCIoT47977.2019.9058405, Conference: 2019 IEEE global conference on internet of things (GCIoT)
Kantarci, B., Erol-Kantarci, M., & Schuckers, S. (2015). Towards secure cloud-centric Internet of Biometric Things. IEEE 4th International Conference on Cloud Networking (CloudNet)
Shah, D., & Haradi, V. (2016). IoT based biometrics implementation on Raspberry Pi. Procedia Computer Science, 79, 328336.
Qianao, Ju., Sun, Geng, Li, Hongsheng, & Zhang, Ying. (2019). Collaborative in-network processing for internet of battery-less things. IEEE INTERNET OF THINGS JOURNAL, 6(3), 5184.
Qianao Ju, Geng Sun, Hongsheng Li, and Ying Zhang. Latency-aware in-network computing for internet of battery-less things. 978–1–5386–6358–5/18/$31.00 ©2018 IEEE, 2018
Sisinni, Emiliano, Saifullah, Abusayeed, Han, Song, Jennehag, Ulf, & Gidlund, Mikael. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 14(11), 4724.
Seetharaman, A., Patwa, N., Saravanan, A. S., & Sharma, A. (2019). Customer expectation from industrial internet of things (IIOT). Journal of Manufacturing Technology Management, 30(8), 1161–1178. https://doi.org/10.1108/JMTM-08-2018-0278
Nahrstedt, K., Li, H., Nguyen, P., Chang, S., & Vu, L. Internet of mobile things: Mobility-driven challenges, designs and implementations. in Proc. IEEE 1st Int. Conf. Internet-Things Design Implement., pp. 2536 (2016)
Hatim, S. M., Elias, S. J., Awang, N., & Darus, M. Y. (2018). VANETs and internet of things (IoT): A discussion. Indonesian Journal of Electrical Engineering and Computer Science, 12(1), 218–224.
Manjinder Kaur, Jyoteesh Malhotra, Pankaj Deep Kaur. A VANET-IoT based Accident Detection and Management System for the Emergency Rescue Services in a Smart City. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Amity University, Noida, India, June 4–5, 2020.
Pigatto, D. F., Rodrigues, M., de Carvalho Fontes, J. V., Pinto, A. S. R., Smith, J., & Branco, K. R. L. J. C. (2018). The internet of flying things internet of things A to Z: Technologies and applications F Qusay Eds Hassan The institute of electrical and electronics engineers John Wiley & Sons
Zaidi Sofiane, and Carlos Tavares Calafate. Internet of flying things (IoFT): A Survey. Article in computer communications, https://www.researchgate.net/publication/345744959, Jan 2021
Liu, G., Perez, R., Muñoz, J. A., & Regueira, F. (2016). Internet of ships: The future ahead. World Journal of Engineering and Technology, 4, 220–227.
Aslam, Sheraz, Michaelides, Michalis P., & Herodotou, Herodotos. (2020). Internet of ships: A survey on architectures, emerging applications, and challenges. IEEE INTERNET OF THINGS JOURNAL, 7(10), 9714–9727.
Alatas, B. (2011). ACROA: Artificial chemical reaction optimization algorithm for global optimization. Expert Systems with Applications, 38, 13170–13180.
Carvalho, I. A., Noronha, T. F., Duhamel, C., & Vieira, L. F. (2016). A scenario based heuristic for the robust shortest path tree problem. IFAC-PapersOnLine, 49(12), 443–448.
Dhondge, K., Shorey, R., & Tew, J. (2016): Heuristic and opportunistic link selection algorithm for energy efficiency in industrial internet of things (IIoT) systems. in 8th international conference on communication systems and networks (COMSNETS), pp. 1–6
Shailendra, S., Rao, A., Panigrahi, B., Rath, H. K., & Simha, A. (2017). Power efficient RACH mechanism for dense IoT deployment. in IEEE international conference on communications workshops (ICC Workshops), pp. (373–378)
Korczynski, M., Hamieh, A., Huh, J. H., Holm, H., Rajagopalan, S. R., & Fefferman, N. H. (2016). Hive oversight for network intrusion early warning using diamond: A bee-inspired method for fully distributed cyber defense’. IEEE Communications Magazine, 54(6), 60–67.
Raz, N. R., & Akbarzadeh-T, M. R. (2014). A Bio-Inspired model for emergence of cooperation among nanothings. in Iranian Conference on Intelligent Systems (ICIS), (pp. 1–6)
Bilal Alatas, Umit Can. (January, 2015). Physics based Metaheuristic Optimization Algorithms for Global Optimization. https://www.researchgate.net/publication/330703172, Article
Anupam Biswas, K. K., Mishra, Shailesh Tiwari, & Misra, A. K. (2013). Physics-inspired optimization algorithms: A survey hindawi publishing corporation. Journal of Optimization. https://doi.org/10.1155/2013/438152
Dohare, Indu, & Singh, Karan. (2020). Green communication in sensor enabled IoT: Integrated physics inspired meta-heuristic optimization based approach. Wireless Networks. https://doi.org/10.1007/s11276-020-02263-w
Quwaider, M., & Shatnawi, Y. (2020). Neural network model as internet of things congestion control using PID controller and immune-hill-climbing algorithm. Simulation Modelling Practice and Theory. https://doi.org/10.1016/j.simpat.2019.102022
Xu Liu_, Jingzhi Huy, Hongliang Zhangz, Boya Diy, and Lingyang Song. (2021) Deployment Optimization for Meta-material Based Internet of Things. Electrical Engineering and Systems Science > Signal Processing. arXiv: 2107.01452v1 [eess.SP] 3 Jul 2021
Hassan Daryanavard and Abbas Harifi. (2019) UAV Path Planning for Data Gathering of IoT Nodes: Ant Colony or Simulated Annealing Optimization’, Third International Conference on Internet of Things and Applications, University of Isfahan, Isfahan, Iran, 978–1–7281–3477–2/19/$31.00 ©2019 IEEE
Ji, J., Guohua, Wu., Shuai, J., Zhang, Z., Wang, Z., & Ren, Y. (2019). (2019) Heuristic approaches for enhancing the privacy of the leader in IoT networks. Sensors, 19, 3886. https://doi.org/10.3390/s19183886
Amer, H., Salman, N., Hawes, M., Chaqfeh, M., Mihaylova, L., & Mayfield, M. (2016). (2016) An improved simulated annealing technique for enhanced mobility in smart cities. Sensors, 16, 1013. https://doi.org/10.3390/s16071013
Chakraborti, Subhamoy, & Sanyal, Sugata. (2015). An elitist simulated annealing algorithm for solving multi objective optimization problems in internet of things design. International Journal of Advanced Networking and Applications, 07(03), 2784–2789.
Sharma, A., Sharma, S., & Gupta, D. (2021). Design of modifed tabu search (MTS) algorithm, an optimization technique for intelligent routing of an IOT network with an aim to improving the effciency. Research Square. https://doi.org/10.21203/rs.3.rs-554510
Revathy, G., Kavitha, N. S., Senthilvadivu, K., Sathya, D., & Logeshwari, P. (2020). Girl child safety using IoT sensors and tabu search optimization. International Journal of Recent Technology and Engineering (IJRTE), 8(5), E6093-018520. https://doi.org/10.35940/ijrte
Xing, L., Liu, Y., Li, H., Chin-Chia, Wu., Lin, W.-C., & Chen, X. (2020). (2020) A novel tabu search algorithm for multi-agv routing problem. Mathematics, 8, 279. https://doi.org/10.3390/math8020279
Téllez, N., Salazar, A., Jimeno, M., & Nino-Ruiz, E. D. (2018). A tabu search method for load balancing in fog computing. International Journal of Artificial Intelligence, 16(2), 78–105.
Kaveh, A., & Talatahari, S. (2010). (2010) A novel heuristic optimization method: Charged system search. Acta Mechanica, 213, 267–289. https://doi.org/10.1007/s00707-009-0270-4
Asadieh, B., & Afshar, A. (2019). (2019) Optimization of water-supply and hydropower reservoir operation using the charged system search algorithm. Hydrology, 6, 5. https://doi.org/10.3390/hydrology6010005
Kasi, S. K., Kasi, M. K., Ali, K., Raza, M., Afzal, H., Lasebae, A., Naeem, Islam, S Ul. B., & Rodrigues, J. J. P. C. (2020). Heuristic edge server placement in industrial internet of things and cellular networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3041805
Dhumane, A. V., Prasad, R. S., & Prasad, J. R. (2017). An optimal routing algorithm for internet of things enabling technologies. International Journal of Rough Sets and Data Analysis (IJRSDA), 4(3), 1–16.
Martins, J., Mazayev, A., Correia, N., Schütz, G., & Barradas, A. (2017). Gacn: Self-clustering genetic algorithm for constrained networks. IEEE Communications Letters, 21(3), 628–631.
I. Khan, J. Sahoo, S. Han, R. Glitho, N. Crespi. (2016) A genetic algorithm-based solution for efficient in-network sensor data annotation in virtualized wireless sensor networks. in 13th IEEE annual consumer communications & networking conference (CCNC), (pp. 321–322)
Aydogan, E., Yilmaz, S., Sen, S., Butun, I., Forsström, S., & Gidlund, M. (2019) A Central Intrusion Detection System for RPL-Based Industrial Internet of Things. 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), https://doi.org/10.1109/WFCS.2019.8758024.
Umeda, T., Shibagaki, K., Nozaki, Y., & Yoshikawa, M. (2018) Lethal genes aware genetic programming analysis for RO PUF. 2018 IEEE 7th global conference on consumer electronics (GCCE), https://doi.org/10.1109/GCCE.2018.8574699
Yu, Y., Choi, T. M., Au, K. F., & Sun, Z. L. (2010). Applications of evolutionary neural networks for sales forecasting of fashionable products. In handbook of research on machine learning applications and trends: Algorithms, methods, and techniques (pp. 387–403). IGI Global
Zhang, B. Y., Hu, W., Feng, J., & Sun, W. H. (2013). Data classification in internet of things based on evolutionary neural network. Advances in Materials Research, 659, 202–207.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
A. Rodriguez, P. Falcarin, A. Ordonez. (2015) Energy optimization in wireless sensor networks based on genetic algorithms. In SAI intelligent systems conference (IntelliSys), (pp. 470–474)
Rodriguez, A., Ordóñez, A., Ordoñez, H., & Segovia, R. (2015). Adapting NSGA-ii for hierarchical sensor networks in the IoT. Procedia Computer Science, 61, 355–360.
Song, L., Chai, K. K., Chen, Y., Schormans, J., Loo, J., & Vinel, A. (2017). Qos-aware energy-efficient cooperative scheme for cluster-based IoT systems. IEEE Systems Journal, 11(3), 1447–1455.
S. Ageev, Y. Kopchak, I. Kotenko, I. Saenko. (2015) Abnormal traffic detection in networks of the internet of things based on fuzzy logical inference. in XVIII international conference on soft computing and measurements (SCM), (pp. 5–8)
Kwon, J. H., Cha, M., Lee, S. B., & Kim, E. J. (2019). Variable-categorized clustering algorithm using fuzzy logic for internet of things local networks. Multimedia Tools and Applications, 78, 2963–2982.
Choi, J.-Y., & Jeong, J. (2015). Design and performance analysis of cost-optimized handoff scheme based on fuzzy logic for building smart car IoT applications. International Information Institute (Tokyo), 18(10), 4339.
Li, Y., Sun, Z., Han, L., & Mei, N. (2017). Fuzzy comprehensive evaluation method for energy management systems based on an internet of things. IEEE Access., 5, 21312.
Mao, Y., Li, J., Chen, M.-R., Liu, J., Xie, C., & Zhan, Y. (2016). Fully secure fuzzy identity based encryption for secure IoT communications. Computer Standards & Interfaces, 44, 117–121.
Alireza Askarzadeh, Esmat Rashedi. (2017) Harmony Search Algorithm. Chapter ·March, https://doi.org/10.4018/978-1-5225-2322-2.ch001, https://www.researchgate.net/publication/314523255
Hamza, K. S., & Amir, F. (2016) Evolutionary clustering for integrated WSN-RFID networks. in 10th international conference on informatics and systems, (pp. 267–272)
Qureshi, T. N., Javaid, N., Al-mogren, A., Khan, A. U., Almajed, H., & Mohiuddin, I. (2021). An adaptive enhanced differential evolution strategies for topology robustness in internet of things. International Journal of Web and Grid Services. https://doi.org/10.1504/IJWGS.2021.10040852
Goudos, S. K., Boursianis, A. D., Mohamed, A. W., Wan, S., Sarigiannidis, P., Karagiannidis, G. K., & Suganthan, P. N. (2021) Large Scale Global Optimization Algorithms for IoT Networks: A Comparative Study. Neural and Evolutionary Computing (cs.NE), arXiv: 2102.11275v1 [cs.NE].
Bin, Xu., Zhang, Lu., Zipeng, Xu., Liu, Y., Chai, J., Qin, S., & Sun, Y. (2021). Energy optimization in multi-UAV-assisted edge data collection system. Computers Materials & Continua Tech Science Press. https://doi.org/10.32604/cmc.2021.018395
Quoc, H. D., The, L. N., Doan, C. N., Thanh, T. P., & Xiong, N. N. (2020). Intelligent differential evolution scheme for network resources in IoT. Scientific Programming, 2020(1), 8860384. https://doi.org/10.1155/2020/8860384
Huang, P.-Q., Wang, Y., Wang, K., & Yang, K. (2019). Differential evolution with a variable population size for deployment optimization in a UAV-assisted IoT data collection system. IEEE Transactions on Emerging Topics in Computational Intelligence. https://doi.org/10.1109/TETCI.2019.2939373
da Silva Fré, G. L., de Carvalho Silva, J., Reis, F. A., & Mendes, L. D. P. (2015) Particle Swarm optimization implementation for minimal transmission power providing a fully-connected cluster for the internet of things. In International Workshop on Telecommunications (IWT), pp. 1–7
Hu, Y., Ding, Y., Hao, K., Ren, L., & Han, H. (2014). An immune orthogonal learning particle swarm optimisation algorithm for routing recovery of wireless sensor networks with mobile sink. International Journal of Systems Science, 45(3), 337–350.
Song, L., Chai, K. K., Chen, Y., Loo, J., Jimaa, S., & Schormans, J. (2016) Qpso-based energyaware clustering scheme in the capillary networks for internet of things systems. in IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6.
Sung, W.-T., & Hsu, C.-C. (2013). Iot system environmental monitoring using IPSO weight factor estimation. Sensor Review, 33(3), 246–256.
Kumrai, T., Ota, K., Dong, M., Kishigami, J., & Sung, D. K. (2017). Multi-objective optimization in cloud brokering systems for connected internet of things. IEEE Internet of Things Journal, 4(2), 404–413.
Verma, A., Kaushal, S., & Sangaiah, A. K. (2017). Computational intelligence based heuristic approach for maximizing energy efficiency in internet of things. Intelligent decision support systems for sustainable computing: Paradigms and applications, 53-76
Reddy, P. K., & Babu, R. (2017). An evolutionary secure energy efficient routing protocol in internet of things. Int. J. Intell. Eng. Syst., 10(3), 337–346.
Ismail, N. H. A., & Hassan, R. (2013). 6lowpan local repair using bio inspired artificial bee colony routing protocol. Procedia Technology, 11, 281–287.
Arulanantham, D., Palanisamy, C., Pradeepkumar, G., & Kavitha, S. (2021). An energy efficient path selection using swarm intelligence in IoT SN. Journal of Physics: Conference Series, 1916, 012102. https://doi.org/10.1088/1742-6596/1916/1/012102
Zhao, H. Y., Wang, J. C., Guan, X., Wang, Z. H., He, Y. H., & Xie, H. L. (2020). Ant colony system for energy consumption optimization in mobile IoT networks. Journal of circuits, systems and computers, 29(09), 2050150. https://doi.org/10.1142/S0218126620501509
Hongyu Zhu, Zhuzhi Jia, Haipeng Peng, Lixiang Li. (2007) Chaotic ant swarm. Third international conference on natural computation (ICNC 2007)’, https://doi.org/10.1109/ICNC.2007.296.
Huang, Jun, Liqian, Xu., Xing, Cong-cong, & Duan, Qiang. (2015). A novel bioinspired multiobjective optimization algorithm for designing wireless sensor networks in the internet of things Hindawi publishing corporation. Journal of Sensors, 2015, 1–16. https://doi.org/10.1155/2015/192194
Joshi, A. S., Kulkarni, O., Kakandikar, G. M., & Nandedkar, V. M. (2017). Cuckoo search optimization-a review international conference on advancements in aeromechanical materials for manufacturing. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2017.07.055
Ramzanpoor, Y., Shirvani, M. H., & Golsorkhtabaramiri, M. (2021). Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure. Complex & Intelligent Systems. https://doi.org/10.1007/s40747-021-00368-z
Bello-Salau, H., Onumanyi, A. J., Abu-Mahfouz, A. M., Adejo, A. O., & MU’AZu, M. B. (2020). New discrete cuckoo search optimization algorithms for effective route discovery in IoT-based vehicular Ad-Hoc networks. Digital Object Identifier. https://doi.org/10.1109/ACCESS.2020.3014736
Shaji, K. A., Theodore, M., Samira, & Revathy, G. (2021). Firefly optimization in IOT applications for wireless mesh networks. Turkish Journal of Computer and Mathematics Education, 12(2), 2487–2491.
Sharmaa, N., Batraa, U., & Zafar, S. (2020). Remit accretion in IOT networks encircling ingenious firefly algorithm correlating water drop algorithm. Procedia Computer Science, 167(2020), 551–561.
Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51–67.
Sangaiah, A. K., Hosseinabadi, A. A. R., Shareh, M. B., Rad, S. Y. B., Zolfagharian, A., & Chilamkurti, N. (2020). IoT resource allocation and optimization based on heuristic algorithm. Sensors, 20, 539. https://doi.org/10.3390/s20020539
T. A. Al-Janabi and H. S. Al-Raweshidy. (2017) Efficient whale optimisation algorithm-based SDN clustering for IoT focused on node density. 16th annual mediterranean Ad Hoc networking workshop, 978–1–5386–2077–9/17/$31.00 ©2017 IEEE
Ullah, Ibrar, Khitab, Zar, Khan, Muhammad Naeem, & Hussain, Sajjad. (2019). An efficient energy management in office using bio-inspired energy optimization algorithms. Processes, 7, 142. https://doi.org/10.3390/pr7030142
Lan, Xu., Yiliu, Tu., & Zhang, Yuting. (2020). A grasshopper optimization-based approach for task assignment in cloud logistics. Hindawi Mathematical Problems in Engineering, 2020, 1–10. https://doi.org/10.1155/2020/3298460
Tlili, S., Mnasri, S., & Val, T. (2021). A multi-objective gray wolf algorithm for routing in IoT collection networks with real experiments. National Computing Colleges Conference (NCCC). https://doi.org/10.1109/NCCC49330.2021.9428865
Manshahia, M. S. (2019). Grey wolf algorithm based energy-efficient data transmission in internet of things. The 6th international symposium on emerging information, communication and networks (EICN 2019). Procedia Computer Science, 160, 604–609.
Valluru, S. K., Sehgal, K., & Thareja, H (2021) Evaluation of moth-flame optimization, genetic and simulated annealing tuned pid controller for steering control of autonomous underwater vehicle. 2021 IEEE international IOT, electronics and mechatronics conference (IEMTRONICS)| 978–1–6654–4067–7/21/$31.00 ©2021 IEEE| https://doi.org/10.1109/IEMTRONICS52119.2021.9422632
Sadrishojaei, M., Navimipour, N. J., Reshadi, M., & Hosseinzadeh, M. (2021). Clustered routing method in the internet of things using a moth-flame optimization algorithm. International Journal of Communication Systems, 2021, e4964. https://doi.org/10.1002/dac.4964
Nallakaruppan, M. K., & Senthil Kumaran, U. (2020). Hybrid swarm intelligence for feature selection on IoT-based infrastructure. Int. J. Cloud Computing, 9(2/3), 216. https://doi.org/10.1504/IJCC.2020.109375
Mirjalili, S. (2016). (2015) Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27, 1053–1073. https://doi.org/10.1007/s00521-015-1920-1
Wang, Lin, Shi, Ronghua, & Dong, Jian. (2021). A hybridization of dragonfly algorithm optimization and angle modulation mechanism for 0–1 knapsack problems. Entropy, 23, 598. https://doi.org/10.3390/e23050598
Aadil, F., Ahsan, W., Rehman, Z. U., Shah, P. A., Rho, S., & Mehmood, I. (2018). Clustering algorithm for internet of vehicles (IoV) based on dragonfly optimizer (CAVDO). Journal of Supercomput. https://doi.org/10.1007/s11227-018-2305-x
Yang, G. (2017). (2017) Game theory-inspired evolutionary algorithm for global optimization. Algorithms, 10, 111. https://doi.org/10.3390/a10040111www.mdpi.com/journal/algorithms
Na, J., Lin, K. J., Huang, Z., & Zhou, S. (2015) An Evolutionary Game Approach on IoT service selection for balancing device energy consumption. in IEEE 12th International Conference on e-Business Engineering, (pp. 331–338)
Borah, S. J., Dhurandher, S. K., Woungang, I., & Kumar, V. (2017). A game theoretic contextbased routing protocol for opportunistic networks in an IoT scenario. Computer Networks, 129(2), 572–584.
Ali, Z., Abbas, Z. H., & Li, F. Y. (2016). A stochastic routing algorithm for distributed IoT with unreliable wireless links. In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring) (pp. 1-5)
Jiang, N., Deng, Y., Kang, X., & Nallanathan, A. (2018). Random access analysis for massive IoT networks under a new spatio-temporal model: A stochastic geometry approach. IEEE Transactions on Communications, 66(11), 5788–5803.
Kaur, R., Kaur, N., & Sood, S. K. (2017). Security in IoT network based on stochastic game net model. International Journal of Network Management, 27(4), e1975.
Gharbieh, M., ElSawy, H., Bader, A., & Alouini, M. S. (2017). Spatiotemporal stochastic modeling of IoT enabled cellular networks: Scalability and stability analysis. IEEE Transactions on Communications, 65(8), 3585–3600.
Kuppusamy, P., & Kalaavathi, B. (2016). Novel authentication based framework for smart transportation using IoT and memetic algorithm. Asian Journal of Research in Social Sciences and Humanities, 6(10), 674–690.
Kuś, W., & Mucha, W. (2016) Memetic inverse problem solution in cyber-physical systems. Adv. Tech. Diagn. 335–341
Tunc, C., & Akar, N. (2017). Markov fluid queue model of an energy harvesting IoT device with adaptive sensing. Performance Evaluation, 111, 1–16.
Sun, F., Wu, C., & Sheng, D. (2017). Bayesian networks for intrusion dependency analysis in water controlling systems. J. Inform. Sci. Eng., 33, 4.
Khanouche, M. E., Amirat, Y., Chibani, A., Kerkar, M., & Yachir, A. (2016). Energy-centered and QoS-aware services selection for internet of things. IEEE Transactions on Automation Science and Engineering, 13(3), 1256–1269.
Zhang, Y.-W., Zhang, W.-M., Peng, K., Yan, D.-C., & Qi-lin, Wu. (2020). A novel edge server selection method based on combined genetic algorithm and simulated annealing algorithm. Automatika, 62(1), 32–43. https://doi.org/10.1080/00051144.2020.1837499
Iwendi, C., Maddikunta, P. K. R., Gadekallu, T. R., Lakshmanna, K., Bashir, A. K., & Piran, M. J. (2020). A metaheuristic optimization approach for energy efficiency in the IoT networks. Pract Exper. https://doi.org/10.1002/spe.2797
Senthil, G. A., Raaza, A., & Kumar, N. (2021). Internet of things energy efficient cluster-based routing using hybrid particle swarm optimization for wireless sensor network. Research Square. https://doi.org/10.21203/rs.3.rs-512199/v1
Kesavan, S. P., Sivaraj, K., Palanisamy, A., & Murugasamy, R. (2019). Distributed localization algorithm using hybrid cuckoo search with hill climbing (CS-HC) algorithm for internet of things. International Journal of Psychosocial Rehabilitation, 23(4), 1171–1179. https://doi.org/10.37200/IJPR/V23I4/PR190443
Shokouhifar, M. (2021). FH-ACO: Fuzzy heuristic-based ant colony optimization for joint virtual network function placement and routing. Applied Soft Computing, 107, 107401.
Moharamkhani, E., Zadmehr, B., Memarian, S., Saber, M. J., & Shokouhifar, M. (2021). Multiobjective fuzzy knowledge-based bacterial foraging optimization for congestion control in clustered wireless sensor networks. International Journal of Communication Systems, 34(16), e4949.
Fanian, F., & Rafsanjani, M. K. (2023). Three-stage fuzzy-metaheuristic algorithm for smart cities: Scheduling mobile charging and automatic rule tuning in WRSNs. Applied Soft Computing, 145, 110599.
Aryai, P., Khademzadeh, A., Jassbi, S. J., Hosseinzadeh, M., Hashemzadeh, O., & Shokouhifar, M. (2023). Real-time health monitoring in WBANs using hybrid metaheuristic-driven machine learning routing protocol (MDML-RP). AEU-Int J Electron Commun, 168, 154723.
Hemavathi, S., & Latha, B. (2023). HFLFO: Hybrid fuzzy levy flight optimization for improving QoS in wireless sensor network. Ad Hoc Networks, 142, 103110.
Memarian, S., Behmanesh-Fard, N., Aryai, P., Shokouhifar, M., Mirjalili, S., & del Carmen Romero-Ternero, M. (2024). TSFIS-GWO: Metaheuristic-driven takagi-sugeno fuzzy system for adaptive real-time routing in WBANs. Applied Soft Computing, 155, 111427.
Salehnia, T., Montazerolghaem, A., Mirjalili, S., Khayyambashi, M. R., & Abualigah, L. (2024). SDN-based optimal task scheduling method in Fog-IoT network using combination of AO and WOA. In Handbook of Whale Optimization Algorithm (pp. 109–128). Academic Press
Funding
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception, material preparation and design. The first draft of the manuscript was written by Satyabrat Sahoo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sahoo, S., Sahoo, S.P. & Kabat, M.R. A Pragmatic Review of QoS Optimisations in IoT Driven Networks. Wireless Pers Commun 137, 325–366 (2024). https://doi.org/10.1007/s11277-024-11412-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-024-11412-9