Abstract
K-core (k-shell) is an interesting measure that discriminates the core and fringe nodes in a complex network. Recent studies have revealed that some nodes of high k-core values may play a vital role in information diffusion. As a result, one may expect that attacking the nodes of high k-core values preferentially will collapse the Internet easily. To our surprise, however, the experiments on two Internet AS-level topologies show that: Although a k-core-based attack is feasible in reality, it is actually less effective than the classic degree-based attack. Indeed, as indicated by the measure normalized susceptibility, we need to remove 2 % to 3 % more nodes in a k-core-based attack in order to collapse the networks. Further investigation on the nodes in a same shell discloses that these nodes often have drastically varying degrees, among which are the nodes of high k-core values but low degrees. These nodes cannot lead to sufficient link deletions in the early stage of a k-core-based attack, and therefore make it less malicious than a degree-based attack. Finally, a strategy called “ELL” is employed for the Internet enhancement. Experiments demonstrate that “ELL” can greatly improve the Internet robustness at very small costs.
Similar content being viewed by others
References
Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)
Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core Decomposition: A Tool for the Visualization of Large Scale Networks. arXiv:cs/0504107v2 (2005)
Boguñá, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1(62) (2010)
Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)
Butler, K., Farley, T., McDaniel, P., Rexford, J.: A survey of bgp security issues and solutions. Proc. IEEE 98, 100–122 (2010)
Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. PNAS 104(27), 11150–11154 (2007)
Clauset, A., Shalizi, C.R., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)
Clegg, R.G., Cairano-Gilfedder, C.D., Zhou, S.: A critical look at power law modelling of the internet. Comput. Commun. 33, 259–268 (2010)
Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85(21), 4626–4628 (2000)
Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86(16), 3682–3685 (2001)
Cohen, R., Havlin, S., ben Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247,901 (2003)
Con-ed steals the internet. http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml
Cowie, J., Ogielski, A.T., Premore, B.J., Yuan, Y.: Internet worms and global routing instabilities. Proc. SPIE 4868 (2002)
Donnet, B., Friedman, T.: Internet topology discovery: a survey. IEEE Commun. Surv. Tutor. 9(4), 2–15 (2007)
Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.: k-core organization of complex networks. Phys. Rev. Lett. 96, 040601 (2006)
Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw. 27, 31–38 (2005)
Garas, A., Argyrakis, P., Rozenblat, C., Tomassini, M., Havlin, S.: Worldwide spreading of economic crisis. New J. Phys. 12(11), 113043 (2010)
Guillaume, J.L., Latapy, M., Magoni, D.: Relevance of massively distributed explorations of the internet topology: qualitative results. Comput. Netw. 50, 3197–3224 (2006)
Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109 (2002)
Huffaker, B., Plummer, D., Moore, D., Claffy, K.C.: Topology discovery by active probing. In: SAINT-W ’02, pp. 90–96 (2002)
Kil, H., Oh, S.C., Elmacioglu, E., Nam, W., Lee, D.: Graph theoretic topological analysis of web service networks. World Wide Web 12(3), 321–343 (2009)
Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010)
Kumpula, J.M., Onnela, J.P., Saramäki, J., Kaski, K., Kertész, J.: Emergence of communities in weighted networks. Phys. Rev. Lett. 99(22), 228701 (2007)
Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)
Liljenstam, M., Yuan, Y., Premore, B.J., Nicol, D.M.: A mixed abstraction level simulation model of large-scale internet worm infestations. In: MASCOTS ’02, pp. 109–116 (2002)
Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K.C., Vahdat, A.: The internet as-level topology: three data sources and one definitive metric. SIGCOMM Comput. Commun. Rev. 36, 17–26 (2006)
Marsden, P.V.: Egocentric and sociocentric measures of network centrality. Soc. Netw. 24, 407–422 (2002)
Musial, K., Budka, M., Juszczyszyn, K. Creation and growth of online social network: how do social networks evolve? World Wide Web (2013). doi:10.1007/s11280-012-0177-1
Musial, K., Kazienko, P.: Social networks on the internet. World Wide Web 16, 31–72 (2013)
Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)
Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)
Qian, T., Li, Q., Srivastava, J., Peng, Z., Yang, Y., Wang, S.: Exploiting small world property for network clustering. World Wide Web (2013). doi:10.1007/s11280-013-0209-5
Rekhter, Y., Li, T., Hares, S.: A border gateway protocol 4 (bgp-4). In: RFC, pp. 4271 (2006)
Schneider, C.M., Moreira, A.A., Andrade, J.S. Jr., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. PNAS 108(10), 3838–3841 (2011)
Seidman, S.B.: Network structure and minum degree. Soc. Netw. 5, 269–287 (1983)
Serrano, M.A., Krioukov, D., Boguñá, M.: Percolation in self-similar networks. Phys. Rev. Lett. 106(048), 701 (2011)
Shakkottai, S., Fomenkov, M., Koga, R., Krioukov, D., Claffy, K.: Evolution of the internet as-level ecosystem. Eur. Phys. J. B 74, 271–278 (2006)
Sterbenz, J.P., Hutchison, D., Cetinkaya, E.K., Jabbar, A., Rohrer, P.J., Schöller, M., Smith, P.: Resilience and survivability in communication networks: strageties, principles, and survey of disciplines. Comput. Netw. 54, 1245–1265 (2010)
Sun, X., Hai, Z.: Modeling and navigation of social information networks in metric spaces. World Wide Web (2013). doi:10.1007/s11280-012-0199-8
Tanizawa, T., Paul, G., Cohen, R., Havlin, S., Stanley, H.E.: Optimization of network robustness to waves of targeted and random attacks. Phys. Rev. E 71(4), 047101 (2005)
Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5, 444–449 (2005)
Xiao, S., Xiao, G.: On imperfect node protection in complex communication networks. J. Phys. A: Math. Theor. 055(5), 101 (2011)
Yan, G., Eidenbenz, S., Thulasidasan, S., Datta, P., Ramaswamy, V.: Criticality analysis of internet infrastructure. Comput. Netw. 54, 1169–1182 (2010)
Youtube hijacking: A ripe ncc ris case study. http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
Youtube. http://www.youtube.com
Zhang, G.Q., Zhang, G.Q., Yang, Q.F., Cheng, S.Q., Zhou, T.: Evolution of the internet and its cores. New J. Phys. 10(12), 123027 (2008)
Zhang, J., Zhao, H., Xu, J., Liu, Z.: Characterizing and modeling the internet router-level topology - the hierarchical features and hir model. Comput. Commun. 33, 2001–2011 (2010)
Zhao, J., Xu, K.: Enhancing the robustness of scale-free networks. J. Phys. A: Math. Theor. 42(19), 195003 (2009)
Zhou, S., Mondragón, R.J.: Accurately modeling the internet topology. Phys. Rev. E 70, 066108 (2004)
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zhao, J., Wu, J., Chen, M. et al. K-core-based attack to the internet: Is it more malicious than degree-based attack?. World Wide Web 18, 749–766 (2015). https://doi.org/10.1007/s11280-014-0275-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-014-0275-3