Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

K-core-based attack to the internet: Is it more malicious than degree-based attack?

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

K-core (k-shell) is an interesting measure that discriminates the core and fringe nodes in a complex network. Recent studies have revealed that some nodes of high k-core values may play a vital role in information diffusion. As a result, one may expect that attacking the nodes of high k-core values preferentially will collapse the Internet easily. To our surprise, however, the experiments on two Internet AS-level topologies show that: Although a k-core-based attack is feasible in reality, it is actually less effective than the classic degree-based attack. Indeed, as indicated by the measure normalized susceptibility, we need to remove 2 % to 3 % more nodes in a k-core-based attack in order to collapse the networks. Further investigation on the nodes in a same shell discloses that these nodes often have drastically varying degrees, among which are the nodes of high k-core values but low degrees. These nodes cannot lead to sufficient link deletions in the early stage of a k-core-based attack, and therefore make it less malicious than a degree-based attack. Finally, a strategy called “ELL” is employed for the Internet enhancement. Experiments demonstrate that “ELL” can greatly improve the Internet robustness at very small costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  2. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core Decomposition: A Tool for the Visualization of Large Scale Networks. arXiv:cs/0504107v2 (2005)

  3. Boguñá, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1(62) (2010)

  4. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)

    Article  MATH  Google Scholar 

  5. Butler, K., Farley, T., McDaniel, P., Rexford, J.: A survey of bgp security issues and solutions. Proc. IEEE 98, 100–122 (2010)

    Article  Google Scholar 

  6. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. PNAS 104(27), 11150–11154 (2007)

    Article  Google Scholar 

  7. Clauset, A., Shalizi, C.R., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clegg, R.G., Cairano-Gilfedder, C.D., Zhou, S.: A critical look at power law modelling of the internet. Comput. Commun. 33, 259–268 (2010)

    Article  Google Scholar 

  9. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85(21), 4626–4628 (2000)

    Article  Google Scholar 

  10. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86(16), 3682–3685 (2001)

    Article  Google Scholar 

  11. Cohen, R., Havlin, S., ben Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247,901 (2003)

    Article  Google Scholar 

  12. Con-ed steals the internet. http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml

  13. Cowie, J., Ogielski, A.T., Premore, B.J., Yuan, Y.: Internet worms and global routing instabilities. Proc. SPIE 4868 (2002)

  14. Donnet, B., Friedman, T.: Internet topology discovery: a survey. IEEE Commun. Surv. Tutor. 9(4), 2–15 (2007)

    Article  Google Scholar 

  15. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.: k-core organization of complex networks. Phys. Rev. Lett. 96, 040601 (2006)

    Article  Google Scholar 

  16. Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw. 27, 31–38 (2005)

    Article  Google Scholar 

  17. Garas, A., Argyrakis, P., Rozenblat, C., Tomassini, M., Havlin, S.: Worldwide spreading of economic crisis. New J. Phys. 12(11), 113043 (2010)

    Article  Google Scholar 

  18. Guillaume, J.L., Latapy, M., Magoni, D.: Relevance of massively distributed explorations of the internet topology: qualitative results. Comput. Netw. 50, 3197–3224 (2006)

    Article  MATH  Google Scholar 

  19. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109 (2002)

    Article  Google Scholar 

  20. Huffaker, B., Plummer, D., Moore, D., Claffy, K.C.: Topology discovery by active probing. In: SAINT-W ’02, pp. 90–96 (2002)

  21. Kil, H., Oh, S.C., Elmacioglu, E., Nam, W., Lee, D.: Graph theoretic topological analysis of web service networks. World Wide Web 12(3), 321–343 (2009)

    Article  Google Scholar 

  22. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010)

    Article  Google Scholar 

  23. Kumpula, J.M., Onnela, J.P., Saramäki, J., Kaski, K., Kertész, J.: Emergence of communities in weighted networks. Phys. Rev. Lett. 99(22), 228701 (2007)

    Article  Google Scholar 

  24. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  Google Scholar 

  25. Liljenstam, M., Yuan, Y., Premore, B.J., Nicol, D.M.: A mixed abstraction level simulation model of large-scale internet worm infestations. In: MASCOTS ’02, pp. 109–116 (2002)

  26. Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K.C., Vahdat, A.: The internet as-level topology: three data sources and one definitive metric. SIGCOMM Comput. Commun. Rev. 36, 17–26 (2006)

    Article  Google Scholar 

  27. Marsden, P.V.: Egocentric and sociocentric measures of network centrality. Soc. Netw. 24, 407–422 (2002)

    Article  Google Scholar 

  28. Musial, K., Budka, M., Juszczyszyn, K. Creation and growth of online social network: how do social networks evolve? World Wide Web (2013). doi:10.1007/s11280-012-0177-1

  29. Musial, K., Kazienko, P.: Social networks on the internet. World Wide Web 16, 31–72 (2013)

    Article  Google Scholar 

  30. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)

    Article  Google Scholar 

  31. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)

    Article  Google Scholar 

  32. Qian, T., Li, Q., Srivastava, J., Peng, Z., Yang, Y., Wang, S.: Exploiting small world property for network clustering. World Wide Web (2013). doi:10.1007/s11280-013-0209-5

  33. Rekhter, Y., Li, T., Hares, S.: A border gateway protocol 4 (bgp-4). In: RFC, pp. 4271 (2006)

  34. Schneider, C.M., Moreira, A.A., Andrade, J.S. Jr., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. PNAS 108(10), 3838–3841 (2011)

    Article  Google Scholar 

  35. Seidman, S.B.: Network structure and minum degree. Soc. Netw. 5, 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  36. Serrano, M.A., Krioukov, D., Boguñá, M.: Percolation in self-similar networks. Phys. Rev. Lett. 106(048), 701 (2011)

    Google Scholar 

  37. Shakkottai, S., Fomenkov, M., Koga, R., Krioukov, D., Claffy, K.: Evolution of the internet as-level ecosystem. Eur. Phys. J. B 74, 271–278 (2006)

    Article  Google Scholar 

  38. Sterbenz, J.P., Hutchison, D., Cetinkaya, E.K., Jabbar, A., Rohrer, P.J., Schöller, M., Smith, P.: Resilience and survivability in communication networks: strageties, principles, and survey of disciplines. Comput. Netw. 54, 1245–1265 (2010)

    Article  MATH  Google Scholar 

  39. Sun, X., Hai, Z.: Modeling and navigation of social information networks in metric spaces. World Wide Web (2013). doi:10.1007/s11280-012-0199-8

  40. Tanizawa, T., Paul, G., Cohen, R., Havlin, S., Stanley, H.E.: Optimization of network robustness to waves of targeted and random attacks. Phys. Rev. E 71(4), 047101 (2005)

    Article  Google Scholar 

  41. Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5, 444–449 (2005)

    Article  Google Scholar 

  42. Xiao, S., Xiao, G.: On imperfect node protection in complex communication networks. J. Phys. A: Math. Theor. 055(5), 101 (2011)

    Google Scholar 

  43. Yan, G., Eidenbenz, S., Thulasidasan, S., Datta, P., Ramaswamy, V.: Criticality analysis of internet infrastructure. Comput. Netw. 54, 1169–1182 (2010)

    Article  MATH  Google Scholar 

  44. Youtube hijacking: A ripe ncc ris case study. http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

  45. Youtube. http://www.youtube.com

  46. Zhang, G.Q., Zhang, G.Q., Yang, Q.F., Cheng, S.Q., Zhou, T.: Evolution of the internet and its cores. New J. Phys. 10(12), 123027 (2008)

    Article  Google Scholar 

  47. Zhang, J., Zhao, H., Xu, J., Liu, Z.: Characterizing and modeling the internet router-level topology - the hierarchical features and hir model. Comput. Commun. 33, 2001–2011 (2010)

    Article  Google Scholar 

  48. Zhao, J., Xu, K.: Enhancing the robustness of scale-free networks. J. Phys. A: Math. Theor. 42(19), 195003 (2009)

    Article  MathSciNet  Google Scholar 

  49. Zhou, S., Mondragón, R.J.: Accurately modeling the internet topology. Phys. Rev. E 70, 066108 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Zhang or Ke Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Wu, J., Chen, M. et al. K-core-based attack to the internet: Is it more malicious than degree-based attack?. World Wide Web 18, 749–766 (2015). https://doi.org/10.1007/s11280-014-0275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-014-0275-3

Keywords