Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Aggregate location recommendation in dynamic transportation networks

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Travel planning and location recommendation are increasingly important in recent years. In this light, we propose and study a novel aggregate location recommendation query (ALRQ) of discovering aggregate locations for multiple travelers and planning the corresponding travel routes in dynamic transportation networks. Assuming the scenario that multiple travelers target the same destination, given a set of travelers’ locations Q, a set of potential aggregate location O, and a departure time t, the ALRQ finds an aggregate location oO that has the minimum global travel time \({\sum }_{q \in Q} T(q,o,t)\), where T(q,o,t) is the travel time between o and q with departure time t. The ALRQ problem is challenging due to three reasons: (1) how to model the dynamic transportation networks practically, and (2) how to compute ALRQ efficiently. We take two types of dynamic transportation networks into account, and we define a pair of upper and lower bounds to prune the search space effectively. Moreover, a heuristic scheduling strategy is adopted to schedule multiple query sources. Finally, we conducted extensive experiments on real and synthetic spatial data to verify the performance of the developed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aljubayrin, S., Yang, B., Jensen, C.S., Zhang, R.: Finding non-dominated paths in uncertain road networks. In: SIGSPATIAL, pp. 15:1–15:10 (2016)

  2. Andersen, O., Jensen, C.S., Torp, K., Yang, B.: Ecotour: reducing the environmental footprint of vehicles using eco-routes. In: MDM, pp. 338–340 (2013)

  3. Chen, Z., Cafarella, M., Chen, J., Prevo, D., Zhuang, J.: Senbazuru: a, prototype spreadsheet database management system. PVLDB 6(12), 1202–1205 (2013)

    Google Scholar 

  4. Chen, Z., Cafarella, M.J.: Integrating spreadsheet data via accurate and low-effort extraction. In: SIGKDD, pp. 1126–1135 (2014)

  5. Chen, Z., Cafarella, M.J., Jagadish, H.V.: Long-tail vocabulary dictionary extraction from the Web. In: WSDM, pp. 625–634 (2016)

  6. Derczynski, L., Yang, B., Jensen, C.S.: Towards context-aware search and analysis on social media data. In: EDBT, pp. 137–142 (2013)

  7. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Math 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  8. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT, pp. 205–216 (2008)

  9. Guo, C., Ma, Y., Yang, B., Jensen, C.S., Kaul, M.: Ecomark: evaluating models of vehicular environmental impact. In: SIGSPATIAL, pp. 269–278 (2012)

  10. Guo, C., Yang, B., Andersen, O., Jensen, C.S., Torp, K.: Ecomark 2.0: empowering eco-routing with vehicular environmental models and actual vehicle fuel consumption data. GeoInformatica 19(3), 567–599 (2015)

    Article  Google Scholar 

  11. Guo, C., Yang, B., Andersen, O., Jensen, C.S., Torp, K.: Ecosky: reducing vehicular environmental impact through eco-routing. In: ICDE, pp. 1412–1415 (2015)

  12. Guo, D., Zhu, Y., Xu, W., Shang, S., Ding, Z.: How to find appropriate automobile exhibition halls: towards a personalized recommendation service for auto show. Neurocomputing 213, 95–101 (2016)

    Article  Google Scholar 

  13. Han, J., Zheng, K., Sun, A., Shang, S., Wen, J.: Discovering neighborhood pattern queries by sample answers in knowledge base. In: ICDE, pp. 1014–1025 (2016)

  14. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–07 (1968)

    Article  Google Scholar 

  15. Hu, J., Yang, B., Jensen, C.S., Ma, Y.: Enabling time-dependent uncertain eco-weights for road networks. GeoInformatica 21(1), 57–88 (2017)

    Article  Google Scholar 

  16. Hu, R., Zhu, X., Cheng, D., He, W., Yan, Y., Song, J., Zhang, S.: Graph self-representation method for unsupervised feature selection. Neurocomputing 220, 130–137 (2017)

    Article  Google Scholar 

  17. Hu, S., Wen, J., Dou, Z., Shang, S.: Following the dynamic block on the Web. World Wide Web 19(6), 1077–1101 (2016)

    Article  Google Scholar 

  18. Hua, M., Pei, J.: Probabilistic path queries in road networks: traffic uncertainty aware path selection. In: EDBT, pp. 347–358 (2010)

  19. Jiang, J., Lu, H., Yang, B., Cui, B.: Finding top-k local users in geo-tagged social media data. In: ICDE, pp. 267–278 (2015)

  20. Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with worker and task privacy protection online first, pp. 1–26 (2017)

  21. Liu, J., Shang, S., Zheng, K., Wen, J.: Multi-view ensemble learning for dementia diagnosis from neuroimaging An artificial neural network approach. Neurocomputing 195, 112–116 (2016)

    Article  Google Scholar 

  22. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J., Jurdak, R.: A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans. Knowl Data Eng. 28(11), 2827–2841 (2016)

    Article  Google Scholar 

  23. Liu, K., Li, Y., Dai, J., Shang, S., Zheng, K.: Compressing large scale urban trajectory data. In: CloudDP@EuroSys, pp. 3:1–3:6 (2014)

  24. Liu, K., Li, Y., Ding, Z., Shang, S., Zheng, K.: Benchmarking big data for trip recommendation. In: ICCCN, pp. 1–6 (2014)

  25. Liu, K., Yang, B., Shang, S., Li, Y., Ding, Z.: MOIR/UOTS: trip recommendation with user oriented trajectory search. In: MDM, pp. 335–337 (2013)

  26. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301–312 (2004)

  27. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. TODS 30(2), 529–576 (2005)

    Article  Google Scholar 

  28. Rong, X., Chen, Z., Mei, Q., Adar, E.: Egoset: Exploiting word ego-networks and user-generated ontology for multifaceted set expansion. In: WSDM, pp. 645–654 (2016)

  29. Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. IEEE Trans. Knowl Data Eng. 29(7), 1549–1562 (2017)

    Article  Google Scholar 

  30. Shang, S., Chen, L., Wei, Z., Guo, D., Wen, J.: Dynamic shortest path monitoring in spatial networks. J. Comput. Sci Technol. 31(4), 637–648 (2016)

    Article  Google Scholar 

  31. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J., Kalnis, P.: Collective travel planning in spatial networks. IEEE Trans. Knowl Data Eng. 28(5), 1132–1146 (2016)

    Article  Google Scholar 

  32. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. PVLDB 10(11), 1178–1189 (2017)

    Google Scholar 

  33. Shang, S., Deng, K., Xie, K.: Best point detour query in road networks. In: ACM GIS, pp. 71–80 (2010)

  34. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: EDBT, pp. 156–167 (2012)

  35. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)

    Article  Google Scholar 

  36. Shang, S., Guo, D., Liu, J., Liu, K.: Human mobility prediction and unobstructed route planning in public transport networks. In: MDM(2), pp. 43–48 (2014)

  37. Shang, S., Guo, D., Liu, J., Wen, J.: Prediction-based unobstructed route planning. Neurocomputing 213, 147–154 (2016)

    Article  Google Scholar 

  38. Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.: Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4), 723–746 (2015)

    Article  Google Scholar 

  39. Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Finding traffic-aware fastest paths in spatial networks. In: SSTD, pp. 128–145 (2013)

  40. Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Modeling of traffic-aware travel time in spatial networks. In: MDM (1), pp. 247–250 (2013)

  41. Shang, S., Yuan, B., Deng, K., Xie, K., Zheng, K., Zhou, X.: Pnn query processing on compressed trajectories. GeoInformatica 16(3), 467–496 (2012)

    Article  Google Scholar 

  42. Shang, S., Yuan, B., Deng, K., Xie, K., Zhou, X.: Finding the most accessible locations: reverse path nearest neighbor query in road networks. In: ACM SIGSPATIAL, pp. 181–190 (2011)

  43. Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.: Discovery of path nearby clusters in spatial networks. IEEE Trans. Knowl Data Eng. 27(6), 1505–1518 (2015)

    Article  Google Scholar 

  44. Shang, S., Zhu, S., Guo, D., Lu, M.: Discovery of probabilistic nearest neighbors in traffic-aware spatial networks. World Wide Web 20(5), 1135–1151 (2017)

    Article  Google Scholar 

  45. Xie, K., Deng, K., Shang, S., Zhou, X., Zheng, K.: Finding alternative shortest paths in spatial networks. ACM Trans. Database Syst. 37(4), 29:1–29:31 (2012)

    Article  Google Scholar 

  46. Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio-temporally correlated time series using markov models. PVLDB 6(9), 769–780 (2013)

    Google Scholar 

  47. Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route planning under time-varying uncertainty. In: ICDE, pp. 136–147 (2014)

  48. Yang, B., Kaul, M., Jensen, C.S.: Using incomplete information for complete weight annotation of road networks. IEEE Trans. Knowl. Data Eng. 26(5), 1267–1279 (2014)

    Article  Google Scholar 

  49. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: ICDE, pp. 230–241 (2013)

  50. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns from trajectories. In: ICDE, pp. 242–253 (2013)

  51. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories. IEEE Trans. Knowl. Data Eng. 26(8), 1974–1988 (2014)

    Article  Google Scholar 

  52. Zhu, S., Wang, Y., Shang, S., Zhao, G., Wang, J.: Probabilistic routing using multimodal data. Neurocomputing 253, 49–55 (2017)

    Article  Google Scholar 

  53. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46(2), 450–461 (2016)

    Article  Google Scholar 

  54. Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1263–1275 (2017)

    Article  MathSciNet  Google Scholar 

  55. Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is partly supported by Natural Science Foundation of P.R.China (No. 61373147, and No. 61672442), Fujian Province Science and Technology Plan Project (No. 2016Y0079), the Open Research Fund Program of Guangdong Province Key Laboratory of Popular High Performance Computers of Shenzhen University, and the Open Research Fund Program of Guangdong Provincial Big Data Collaborative Innovation Center, Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunzhi Zhu.

Additional information

This article belongs to the Topical Collection: Special Issue on Deep Mining Big Social Data

Guest Editors: Xiaofeng Zhu, Gerard Sanroma, Jilian Zhang, and Brent C. Munsell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Y., Zhong, Y. et al. Aggregate location recommendation in dynamic transportation networks. World Wide Web 21, 1637–1653 (2018). https://doi.org/10.1007/s11280-017-0496-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-017-0496-3

Keywords