Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Knowledge-graph-enabled biomedical entity linking: a survey

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Biomedical Entity Linking (BM-EL) task, which aims to match biomedical mentions in articles to entities in a certain knowledge base (e.g., the Unified Medical Language System), draws dramatic attention in recent years. BM-EL can help to disambiguate medical terms and link to rich semantic information in the biomedical knowledge base, which can act as an essential means for many downstream applications. Although entity linking tasks have been investigated in the general domain and achieved great success, many challenges remain in the biomedical field, for instance, highly complex terminology, less training data, and entity ambiguity. In this survey, we categorize BM-EL methods into rule-based, machine learning, and deep learning models according to the development of the model paradigm and provide a comprehensive review of each approach. In-depth study of current BM-EL efforts, we group the model architectures into four categories: joint entity recognition and linking, graph-based global entity disambiguation, cross-lingual architectures, and model-efficiency improvement. We further introduce six well-established datasets that are commonly used for BM-EL tasks. Furthermore, we present a comparison of the different methods and discuss their advantages and disadvantages. Finally, we discuss the limitations of existing methods for BM-EL and discuss promising future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of supporting Data

Not applicable.

References

  1. Reddy, C.K., Aggarwal, C.C.: Healthcare data analytics (2015)

  2. Bodenreider, O.: The unified medical language system (umls): integrating biomedical terminology. Nucleic Acids Res. 32(suppl_1), 267–270 (2004)

    Article  Google Scholar 

  3. Huang, M.-S., Lai, P.-T., Li, P.-Y., You, Y.-T., Tsai, R.T.-H., Hsu, W.-L.: Biomedical named entity recognition and linking datasets: survey and our recent development. Brief. Bioinform. 21(6), 2219–2238 (2020)

    Article  Google Scholar 

  4. Tsai, R.T.-H., Wu, S.-H., Chou, W.-C., Lin, Y.-C., He, D., Hsiang, J., Sung, T.-Y., Hsu, W.-L.: Various criteria in the evaluation of biomedical named entity recognition. BMC Bioinformatics 7(1), 1–8 (2006)

    Article  Google Scholar 

  5. Shen, W., Li, Y., Liu, Y., Han, J., Wang, J.: Yuan, X. Entity linking meets deep learning, Techniques and Solutions (2021)

    Google Scholar 

  6. Sevgili, O., Shelmanov, A., Arkhipov, M., Panchenko, A., Biemann, C.: Neural entity linking: a survey of models based on deep learning arXiv e-prints (2020)

  7. Rao, D., Mcnamee, P., Dredze, M.: Entity linking: finding extracted entities in a knowledge base.Springer Berlin Heidelberg (2013)

  8. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015)

    Article  Google Scholar 

  9. Al-Moslmi, T., Ocaa, M.G., Opdahl, A.L., Veres, C.: Named entity extraction for knowledge graphs: a literature overview. IEEE Access 8(1), 32862–32881 (2020)

    Article  Google Scholar 

  10. Zhu, M., Celikkaya, B., Bhatia, P., Reddy, C.K.: Latte: latent type modeling for biomedical entity linking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 9757–9764 (2020)

  11. Tutubalina, E., Miftahutdinov, Z., Nikolenko, S., Malykh, V.: Medical concept normalization in social media posts with recurrent neural networks. J. Biomed. Inform. 84, 93–102 (2018)

    Article  Google Scholar 

  12. Karimi, S., Wang, C., Metke-Jimenez, A., Gaire, R., Paris, C.: Text and data mining techniques in adverse drug reaction detection. ACM Computing Surveys (CSUR) 47(4), 1–39 (2015)

    Article  Google Scholar 

  13. Limsopatham, N., Collier, N.: Normalising medical concepts in social media texts by learning semantic representation. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (volume 1: Long Papers), pp. 1014–1023 (2016)

  14. Miftahutdinov, Z., Tutubalina, E.: Deep neural models for medical concept normalization in user-generated texts (2019)

  15. Yuan, H., Yuan, Z., Yu, S.: Generative biomedical entity linking via knowledge base-guided pre-training and synonyms-aware fine-tuning. arXiv (2022)

  16. Yuan, H., Yuan, Z., Gan, R., Zhang, J., Xie, Y., Yu, S.: BioBART: pretraining and evaluation of a biomedical generative language model. arXiv (2022)

  17. Almeida, T., Antunes, R., F Silva, J., Almeida, J.R., Matos, S.: Chemical identification and indexing in pubmed full-text articles using deep learning and heuristics. Database 2022 (2022)

  18. Leaman, R., Islamaj Doğan, R., Lu, Z.: Dnorm: disease name normalization with pairwise learning to rank. Bioinformatics 29(22), 2909–2917 (2013)

    Article  Google Scholar 

  19. Li, H., Chen, Q., Tang, B., Wang, X., Xu, H., Wang, B., Huang, D.: Cnn-based ranking for biomedical entity normalization. BMC Bioinformatics 18(11), 79–86 (2017)

    Google Scholar 

  20. Wiatrak, M., Iso-Sipila, J.: Simple hierarchical multi-task neural end-to-end entity linking for biomedical text. In: Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis, pp. 12–17 (2020)

  21. Fu, X., Zhang, J., Meng, Z., King, I.: Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of The Web Conference vol. 2020, pp. 2331–2341 (2020)

  22. D’Souza, J., Ng, V.: Sieve-based entity linking for the biomedical domain. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 297–302 (2015)

  23. Kang, N., Singh, B., Afzal, Z., Mulligen, E.M., Kors, J.A.: Using rule-based natural language processing to improve disease normalization in biomedical text. J. Am. Med. Inform. Assoc. 20(5), 876–881 (2013)

    Article  Google Scholar 

  24. Leal, A., Martins, B., Couto, F.M.: Ulisboa: recognition and normalization of medical concepts. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 406–411 (2015)

  25. Buyko, E., Tomanek, K., Hahn, u.: 2007. resolution of coordination ellipses in biological named entities using conditional random fields. In: In PACLING 2007 - Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics, pp. 163–171 (2007)

  26. Savova, G.K., Coden, A.R., Sominsky, I.L., Johnson, R., Ogren, P.V., Groen, P., Chute, C.G.: Word sense disambiguation across two domains: biomedical literature and clinical notes. J. Biomed. Inform. 41(6), 1088–1100 (2008)

    Article  Google Scholar 

  27. Stevenson, M., Guo, Y., Alamri, A., Gaizauskas, R.: Disambiguation of biomedical abbreviations (2009)

  28. Gaudan, S., Kirsch, H., Rebholz-Schuhmann, D.: Resolving abbreviations to their senses in medline. Bioinform. 21(18), 3658–3664 (2005)

    Article  Google Scholar 

  29. Xu, J., Lee, H.-J., Ji, Z., Wang, J., Wei, Q., Xu, H.: Uth_Ccb system for adverse drug reaction extraction from drug labels at tac-Adr 2017. In: TAC (2017)

  30. Leaman, R., Lu, Z.: Taggerone: joint named entity recognition and normalization with semi-markov models. Bioinformatics 32(18), 2839–2846 (2016)

    Article  Google Scholar 

  31. Luo, Y., Song, G., Li, P., Qi, Z.: Multi-task medical concept normalization using multi-view convolutional neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

  32. Schumacher, E., Mulyar, A., Dredze, M.: Clinical concept linking with contextualized neural representations (2020)

  33. Xu, D., Zhang, Z., Bethard, S.: A generate-and-rank framework with semantic type regularization for biomedical concept normalization, pp 8452–8464 (2020)

  34. Ji, Z., Wei, Q., Xu, H.: Bert-based ranking for biomedical entity normalization (2019)

  35. Zhao, S., Liu, T., Zhao, S., Wang, F.: A neural multi-task learning framework to jointly model medical named entity recognition and normalization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 817–824 (2019)

  36. Niu, J., Yang, Y., Zhang, S., Sun, Z., Zhang, W.: Multi-task character-level attentional networks for medical concept normalization. Neural. Process. Lett. 49(3), 1239–1256 (2019)

    Article  Google Scholar 

  37. Deng, P., Chen, H., Huang, M., Ruan, X., Xu, L.: An ensemble cnn method for biomedical entity normalization. In: Proceedings of the 5th Workshop on BioNLP Open Shared Tasks, pp. 143–149 (2019)

  38. Murty*, S., Verga*, P., Vilnis, L., Radovanovic, I., McCallum, A.: Hierarchical losses and new resources for fine-grained entity typing and linking. arXiv (2018)

  39. Mondal, I., Purkayastha, S., Sarkar, S., Goyal, P., Pillai, J., Bhattacharyya, A., Gattu, M.: Medical entity linking using triplet network. arXiv preprint. arXiv:2012.11164 (2020)

  40. Fakhraei, S., Mathew, J., Ambite, J.L.: NSEEN: neural semantic embedding for entity normalization. In: Machine Learning and Knowledge Discovery In, pp. 665–680. Springer (2019)

  41. Angell, R., Monath, N., Mohan, S., Yadav, N., McCallum, A.: Clustering-based inference for zero-shot biomedical entity linking. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics. Human Language Technologies

  42. Vretinaris, A., Lei, C., Efthymiou, V., Qin, X., Özcan, F.: Medical entity disambiguation using graph neural networks. In: Proceedings of the 2021 International Conference on Management of Data, pp. 2310–2318 (2021)

  43. Kate, R.J.: Normalizing clinical terms using learned edit distance patterns. J. Am. Med. Inform. Assoc. 23(2), 380–386 (2015)

    Article  Google Scholar 

  44. Lee, K., Hasan, S.A., Farri, O., Choudhary, A., Agrawal, A.: Medical concept normalization for online user-generated texts. In: 2017 IEEE International Conference on Healthcare Informatics (ICHI) (2017)

  45. Aronson, A.R.: Effective mapping of biomedical text to the umls metathesaurus: the metamap program. In: Proceedings of the AMIA Symposium, p. 17, Medical Informatics Association (2001)

  46. Savova, G.K., Masanz, J.J., Ogren, P.V., Zheng, J., Sohn, S., Kipper-Schuler, K.C., Chute, C.G.: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 17(5), 507–513 (2010)

    Article  Google Scholar 

  47. Dogan, R.I., Lu, Z.: An inference method for disease name normalization. In: Information Retrieval and Knowledge Discovery in Biomedical Text, Papers from the 2012 AAAI Fall Symposium, Arlington, Virginia, USA, November 2-4, 2012. AAAI Technical Report (2012)

  48. Wermter, J., Tomanek, K., Hahn, U.: High-performance gene name normalization with GeNo. Bioinformatics 25(6), 815–821 (2009)

    Article  Google Scholar 

  49. Zhang, W., Tan, C.L., Su, J., Wang, W.T.: Entity linking leveraging automatically generated annotation. In: The 23rd International Conference on Computational Linguistics, Beijing, pp. 1290–1298. Institute for Infocomm Research (2010)

  50. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(ARTICLE), 2493–2537 (2011)

    MATH  Google Scholar 

  51. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. arXiv (2013)

  52. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. (2018)

  53. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J.: Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinform. 36(4), 1234–1240 (2020)

    Article  Google Scholar 

  54. Wei, Q., Ji, Z., Si, Y., Du, J., Wang, J., Tiryaki, F., Wu, S., Tao, C., Roberts, K., Xu, H.: Relation extraction from clinical narratives using pre-trained language models. In: AMIA Annual Symposium Proceedings, vol. 2019, p. 1236. American Medical Informatics Association (2019)

  55. Vashishth, S., Newman-Griffis, D., Joshi, R., Dutt, R., Rosé, C.P.: Improving broad-coverage medical entity linking with semantic type prediction and large-scale datasets. J. Biomed. Inform. 121, 103880 (2021)

    Article  Google Scholar 

  56. Sung, M., Jeon, H., Lee, J., Kang, J.: Biomedical entity representations with synonym marginalization. arXiv (2020)

  57. Miftahutdinov, Z., Tutubalina, E.: Kfu at Clef Ehealth 2017 Task 1: Icd-10 coding of english death certificates with recurrent neural networks. In: CLEF (Working Notes) (2017)

  58. Cao, N.D., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. coRR (2020)

  59. Rajani, N.F., Bornea, M., Barker, K.: Stacking with auxiliary features for entity linking in the medical domain. In: BioNLP 2017, pp. 39–47 (2017)

  60. Mrini, K., Nie, S., Gu, J., Wang, S., Sanjabi, M., Firooz, H. (2022)

  61. Chen, Z., Ji, H.: Collaborative ranking: a case study on entity linking. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 771–781 (2011)

  62. Chisholm, A., Hachey, B.: Entity disambiguation with web links. Transactions of the Association for Computational Linguistics 3, 145–156 (2015)

    Article  Google Scholar 

  63. Lazic, N., Subramanya, A., Ringgaard, M., Pereira, F.: Plato: a selective context model for entity resolution. Trans. Assoc. Comput. Linguist. 3, 503–515 (2015)

    Article  Google Scholar 

  64. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y. (2016)

  65. Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graphbased method. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774 (2011)

  66. Cassidy, T., Ji, H., Ratinov, L.-A., Zubiaga, A., Huang, H.: Analysis and Enhancement of Wikification for Microblogs with Context Expansion. In: COLING, vol. 12, pp. 441–456 (2012)

  67. He, Z., Liu, S., Song, Y., Li, M., Zhou, M., Wang, H.: Efficient collective entity linking with stacking. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 426–435 (2013)

  68. Cheng, X., Roth, D.: Relational inference for wikification. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1787–1796 (2013)

  69. Durrett, G., Klein, D.: A joint model for entity analysis: coreference, typing, and linking. Trans. Assoc. Comput. Linguist. 2, 477–490 (2014)

    Article  Google Scholar 

  70. Huang, H., Cao, Y., Huang, X., Ji, H., Lin, C.-Y.: Collective tweet wikification based on semi-supervised graph regularization. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 380–390 (2014)

  71. Zheng, J.G., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D., Hendler, J., Ji, H.: Entity linking for biomedical literature. BMC Med. Inform. Decis. Making 15(1), 1–9 (2015)

    Google Scholar 

  72. Pujary, D., Thorne, C., Aziz, W.: Disease Normalization with graph embeddings. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Systems and Applications, pp. 209–217. Springer, Cham (2021)

  73. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

  74. Schlichtkrull, M., Kipf, T.N., Bloem, P., Berg, R.v.d., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: European Semantic Web Conference, pp. 593–607. Springer (2018)

  75. Bodenreider, O.: The unified medical language system (umls): integrating biomedical terminology. Nucleic acids research 32(suppl_1), 267–270 (2004)

    Article  Google Scholar 

  76. Mohan, S., Li, D.: Medmentions: a large biomedical corpus annotated with UMLS concepts. arXiv (2019)

  77. Ji, H., Nothman, J., Hachey, B., Florian, R.: Overview of Tac-Kbp2015 Tri-Lingual Entity Discovery and Linking. In: TAC (2015)

  78. Afzal, Z., Akhondi, S.A., Haagen, H., Mulligen, E.M., Kors, J.A.: Biomedical Concept Recognition in French Text Using Automatic Translation of English Terms. In: CLEF (Working Notes) (2015)

  79. Van Mulligen, E.M., Afzal, Z., Akhondi, S., Vo, D., Kors, J.: Erasmus Mc at Clef Ehealth 2016: concept recognition and coding in French texts. In: CEUR Workshop Proceedings, pp. 171–178 (2016)

  80. Jiang, J., Guan, Y., Zhao, C.: Wi-Enre in Clef Ehealth Evaluation Lab 2015: clinical named entity recognition based on Crf. In: CLEF (Working Notes) (2015)

  81. Roller, R., Kittner, M., Weissenborn, D., Leser, U.: Cross-lingual candidate search for biomedical concept Normalization. arXiv (2018)

  82. Liu, F., Vulić, I., Korhonen, A., Collier, N.: Learning Domain-specialised representations for cross-Lingual. Biomedical Entity Linking. arXiv (2021)

  83. Borchert, F.: Schapranow, M.-P. Spanish biomedical entity linking with pre-trained transformers and cross-lingual candidate retrieval, Hpi-dhc@ bioasq distemist (2022)

  84. Lai, T., Ji, H., Zhai, C.: Bert might be overkill: A tiny but effective biomedical entity linker based on residual convolutional neural networks. arXiv preprint. arXiv:2109.02237 (2021)

  85. Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T., Gao, J., Poon, H.: Domain-specific language model pretraining for biomedical natural language processing. CoRR (2020)

  86. Chen, L., Varoquaux, G., Suchanek, F.M.: A lightweight neural model for biomedical entity linking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 12657–12665 (2021)

  87. Bhowmik, R., Stratos, K., Melo, G.: Fast and effective biomedical entity linking using a dual encoder. arXiv preprint arXiv:2103.05028 (2021)

  88. Ye, D., Lin, Y., Li, P., Sun, M., Liu, Z.: A simple but effective pluggable entity lookup table for pre-trained language models. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 523–529 (2022)

  89. Li, J., Sun, Y., Johnson, R.J., Sciaky, D., Wei, C. -H., Leaman, R., Davis, A.P., Mattingly, C.J., Wiegers, T.C., Lu, Z.: Biocreative V CDR task corpus: a resource for chemical disease relation extraction. Database 2016 (2016)

  90. Doğan, R.I., Leaman, R., Lu, Z.: Ncbi disease corpus: a resource for disease name recognition and concept normalization. J. Biomed. Inform. 47, 1–10 (2014)

    Article  Google Scholar 

  91. Davis, A.P., Wiegers, T.C., Rosenstein, M.C., Mattingly, C.J.: MEDIC: a practical disease vocabulary used at the comparative toxicogenomics database. Database 2012 (2012)

  92. Pradhan, S., Elhadad, N., South, B.R., Martinez, D., Christensen, L.M., Vogel, A., Suominen, H., Chapman, W.W., Savova, G.K.: Task 1: Share/Clef Ehealth Evaluation Lab 2013. In: CLEF (Working Notes), Vol. 1179 (2013)

  93. Basaldella, M., Liu, F., Shareghi, E., Collier, N.: COMETA: a corpus for medical entity linking in the social media. arXiv (2020)

  94. Wright, D., Katsis, Y., Mehta, R., Hsu, C.-N.: Normco: deep disease normalization for biomedical knowledge base construction. In: Automated Knowledge Base Construction (AKBC) (2019)

  95. Varma, M., Orr, L., Wu, S., Leszczynski, M., Ling, X., Ré, C.: Cross-domain data integration for named entity disambiguation in biomedical text. arXiv preprint. arXiv:2110.08228 (2021)

  96. Abdurxit, M., Tohti, T., Hamdulla, A.: An efficient method for biomedical entity linking based on inter-and intra-entity attention. Appl. Sci. 12(6), 3191 (2022)

    Article  Google Scholar 

  97. Dong, H., Suárez-Paniagua, V., Zhang, H., Wang, M., Casey, A., Davidson, E., Chen, J., Alex, B., Whiteley, W., Wu, H.: Ontology-based and Weakly Supervised Rare Disease Phenotyping from Clinical Notes. arXiv (2022)

  98. Du, C., Popat, K., Martin, L., Petroni, F.: Entity tagging: extracting entities in text without mention supervision. coRR (2022)

  99. Ayoola, T., Tyagi, S., Fisher, J., Christodoulopoulos, C., Pierleoni, A.: RefinED: an efficient zero-shot-capable approach to end-to-end entity linking. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, pp. 209–220. Association for Computational Linguistics, Hybrid: Seattle, Washington + Online (2022)

  100. Dong, S., Miao, X., Liu, P., Wang, X., Cui, B., Li, J.. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 1754–1766 (2022)

Download references

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Contributions

Jiyun Shi: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data Curation, Writing for Original Draft. Zhimeng Yuan: Methodology, Validation, Formal analysis, Visualization. Wenxuan Guo: Methodology, Validation, Formal analysis. Meihui Zhang: Review and editing, Project administration. Chen Ma: Review and editing. Jiehao Chen: prepared the table, Investigation, Data Curation.

Corresponding author

Correspondence to Meihui Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

We declare that authors have no known competing interests or personal relationships that might be perceived to influence the discussion reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Knowledge-Graph-Enabled Methods and Applications for the Future Web Guest Editors: Xin Wang, Jeff Pan, Qingpeng Zhang, Yuan-Fang Li

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Yuan, Z., Guo, W. et al. Knowledge-graph-enabled biomedical entity linking: a survey. World Wide Web 26, 2593–2622 (2023). https://doi.org/10.1007/s11280-023-01144-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-023-01144-4

Keywords