Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Stretching intervention can prevent muscle injuries: a systematic review and meta-analysis

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

Previous meta-analysis studies concluded that static stretching intervention cannot decrease all-cause injury in healthy active individuals. On the other hand, static stretching intervention may decrease muscle injury, but the evidence has not been integrated. The aim of this study was to systematically review the papers and analyze the preventative effects of static stretching intervention on muscle and tendon injuries in healthy active participants.

Methods

A computerized search of PubMed, Web of Science, and EBSCO was performed in June 2023. Randomized controlled trials with static stretching investigations to prevent muscle and tendon injuries were included.

Results

Of 5575 papers identified, 4 papers were included (three papers examined both muscle and tendon injuries, and one paper examined only tendon injuries). For muscle injuries, the result of the meta-analysis showed that the static stretching intervention group significantly decreased muscle injuries compared to the control group (odds ratio = 0.37; 95% confidence interval, 0.16–0.85; p < 0.01; I2 = 63%). For tendon injuries, it was found that there was no significant difference between the static stretching intervention group and the control group (odds ratio = 0.57; 95% confidence interval, 0.25–1.33; p = 0.194; I2 = 63%).

Conclusions

These data indicated that static stretching intervention can prevent muscle injuries, but not tendon injuries, in healthy active participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data available on request from the authors.

Abbreviations

CI:

Confidence interval

OR:

Odds ratio

References

  1. Amako M, Oda T, Masuoka K, Yokoi H, Campisi P (2003) Effect of static stretching on prevention of injuries for military recruits. Mil Med 168:442–446

    Article  PubMed  Google Scholar 

  2. Pope R, Herbert R, Kirwan J (1998) Effects of ankle dorsiflexion range and pre-exercise calf muscle stretching on injury risk in army recruits. Aust J Physiother 44:165–172

    Article  PubMed  Google Scholar 

  3. Behm DG, Blazevich AJ, Kay AD, McHugh M (2016) Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab 41:1–11. https://doi.org/10.1139/apnm-2015-0235

    Article  PubMed  Google Scholar 

  4. Wright AA, Ness BM, Donaldson M, Hegedus EJ, Salamh P, Cleland JA (2021) Effectiveness of shoulder injury prevention programs in an overhead athletic population: a systematic review. Phys Ther Sport 52:189–193. https://doi.org/10.1016/j.ptsp.2021.09.004

    Article  PubMed  Google Scholar 

  5. Pope R, Herbert R, Kirwan J, Graham BJ (2000) A randomized trial of preexercise stretching for prevention of lower-limb injury. Med Sci Sports Exerc 32:271–277

    Article  CAS  PubMed  Google Scholar 

  6. Jamtvedt G, Herbert RD, Flottorp S, Odgaard-Jensen J, Håvelsrud K, Barratt A, Mathieu E, Burls A, Oxman AD (2010) A pragmatic randomised trial of stretching before and after physical activity to prevent injury and soreness. Br J Sports Med 44:1002–1009. https://doi.org/10.1136/BJSM.2009.062232

    Article  PubMed  Google Scholar 

  7. Azuma N, Someya F (2020) Injury prevention effects of stretching exercise intervention by physical therapists in male high school soccer players. Scand J Med Sci Sport 30:2178–2192. https://doi.org/10.1111/sms.13777

    Article  Google Scholar 

  8. McHugh MP, Cosgrave CH (2010) To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J Med Sci Sports 20:169–181. https://doi.org/10.1111/j.1600-0838.2009.01058.x

    Article  CAS  PubMed  Google Scholar 

  9. Lauersen JB, Bertelsen DM, Andersen LB (2014) The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med 48:871–877. https://doi.org/10.1136/bjsports-2013-092538

    Article  PubMed  Google Scholar 

  10. Leppänen M, Aaltonen S, Parkkari J, Heinonen A, Kujala UM (2014) Interventions to prevent sports related injuries: a systematic review and meta-analysis of randomised controlled trials. Sports Med 44:473–486. https://doi.org/10.1007/s40279-013-0136-8

    Article  PubMed  Google Scholar 

  11. Hadala M, Barrios C (2009) Different strategies for sports injury prevention in an America’s cup yachting crew. Med Sci Sports Exerc 41:1587–1596. https://doi.org/10.1249/MSS.0b013e31819c0de7

    Article  PubMed  Google Scholar 

  12. Verrall GM, Slavotinek JP, Barnes PG (2005) The effect of sports specific training on reducing the incidence of hamstring injuries in professional Australian rules football players. Br J Sports Med 39:363–368. https://doi.org/10.1136/bjsm.2005.018697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Poppel D, van der Worp M, Slabbekoorn A, van den Heuvel SSP, van Middelkoop M, Koes BW, Verhagen AP, Scholten-Peeters GGM (2021) Risk factors for overuse injuries in short- and long-distance running: a systematic review. J Sport Heal Sci 10:14–28. https://doi.org/10.1016/J.JSHS.2020.06.006

    Article  Google Scholar 

  14. Freckleton G, Pizzari T (2013) Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med 47:351–358. https://doi.org/10.1136/BJSPORTS-2011-090664

    Article  PubMed  Google Scholar 

  15. Green B, Pizzari T (2017) Calf muscle strain injuries in sport: a systematic review of risk factors for injury. Br J Sports Med 51:1189–1194. https://doi.org/10.1136/BJSPORTS-2016-097177

    Article  PubMed  Google Scholar 

  16. Watsford ML, Murphy AJ, McLachlan KA, Bryant AL, Cameron ML, Crossley KM, Makdissi M (2010) A prospective study of the relationship between lower body stiffness and hamstring injury in professional Australian rules footballers. Am J Sports Med 38:2058–2064. https://doi.org/10.1177/0363546510370197

    Article  PubMed  Google Scholar 

  17. Pickering Rodriguez EC, Watsford ML, Bower RG, A.J. (2017) Murphy, the relationship between lower body stiffness and injury incidence in female netballers. Sport Biomech 16:361–373. https://doi.org/10.1080/14763141.2017.1319970

    Article  Google Scholar 

  18. Brazier J, Maloney S, Bishop C, Read PJ, Turner AN (2019) Lower extremity stiffness: considerations for testing, performance enhancement, and injury risk. J Strength Cond Res 33:1156–1166. https://doi.org/10.1519/JSC.0000000000002283

    Article  PubMed  Google Scholar 

  19. Lorimer AV, Hume PA (2016) Stiffness as a risk factor for achilles tendon injury in running athletes. Sport Med 46:1921–1938. https://doi.org/10.1007/s40279-016-0526-9

    Article  Google Scholar 

  20. Takeuchi K, Nakamura M, Konrad A, Mizuno T (2023) Long-term static stretching can decrease muscle stiffness: a systematic review and meta-analysis. Scand J Med Sci Sports. https://doi.org/10.1111/SMS.14402

    Article  PubMed  Google Scholar 

  21. Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E (2016) Susceptibility to hamstring injuries in soccer: a prospective study Using muscle functional magnetic resonance imaging. Am J Sports Med 44:1276–1285. https://doi.org/10.1177/0363546515626538

    Article  PubMed  Google Scholar 

  22. Orchard JW, Chaker Jomaa M, Orchard JJ, Rae K, Hoffman DT, Reddin T, T. (2020) Driscoll, Fifteen-week window for recurrent muscle strains in football: a prospective cohort of 3600 muscle strains over 23 years in professional Australian rules football. Br J Sports Med 54:1103–1107. https://doi.org/10.1136/bjsports-2019-100755

    Article  PubMed  Google Scholar 

  23. Soligard T, Steffen K, Palmer D, Alonso JM, Bahr R, Lopes AD, Dvorak J, Grant ME, Meeuwisse W, Mountjoy M, Pena Costa LO, Salmina N, Budgett R, Engebretsen L, Sports injury and illness incidence in the Rio de Janeiro, (2016) Olympic summer games: a prospective study of 11274 athletes from 207 countries. Br J Sports Med 51(2017):1265–1271. https://doi.org/10.1136/bjsports-2017-097956

    Article  Google Scholar 

  24. Ahmad CS, Dick RW, Snell E, Kenney ND, Curriero FC, Pollack K, Albright JP, Mandelbaum BR (2014) Major and minor league baseball hamstring injuries: epidemiologic findings from the major league baseball injury surveillance system. Am J Sports Med 42:1464–1470. https://doi.org/10.1177/0363546514529083

    Article  PubMed  Google Scholar 

  25. Moltubakk MM, Villars FO, Magulas MM, Magnusson SP, Seynnes OR, Bojsen-Møller J (2021) Altered triceps surae muscle-tendon unit properties after 6 months of static stretching. Med Sci Sports Exerc 53:1975–1986. https://doi.org/10.1249/MSS.0000000000002671

    Article  PubMed  Google Scholar 

  26. Konrad A, M. (2014) Tilp, increased range of motion after static stretching is not due to changes in muscle and tendon structures. Clin Biomech (Bristol, Avon) 29:636–642. https://doi.org/10.1016/J.CLINBIOMECH.2014.04.013

    Article  PubMed  Google Scholar 

  27. Blazevich AJ, Cannavan D, Waugh CM, Miller SC, Thorlund JB, Aagaard P, Kay AD (2014) Range of motion, neuromechanical, and architectural adaptations to plantar flexor stretch training in humans. J Appl Physiol 117:452–462. https://doi.org/10.1152/JAPPLPHYSIOL.00204.2014

    Article  CAS  PubMed  Google Scholar 

  28. Kubo K, Kanehisa H, Fukunaga T (2002) Effect of stretching training on the viscoelastic properties of human tendon structures in vivo. J Appl Physiol 92:595–601. https://doi.org/10.1152/japplphysiol.00658.2001

    Article  PubMed  Google Scholar 

  29. Mahieu NN, McNair P, De Muynck M, Stevens V, Blanckaert I, Smits N, Witvrouw E (2007) Effect of static and ballistic stretching on the muscle-tendon tissue properties. Med Sci Sports Exerc 39:494–501. https://doi.org/10.1249/01.mss.0000247004.40212.f7

    Article  PubMed  Google Scholar 

  30. Medina McKeon JM, Bush HM, Reed A, Whittington A, T.L. (2014) Uhl, P.O. mckeon, return-to-play probabilities following new versus recurrent ankle sprains in high school athletes. J Sci Med Sport 17:23–28. https://doi.org/10.1016/j.jsams.2013.04.006

    Article  PubMed  Google Scholar 

  31. Ardern CL, Büttner F, Andrade R, Weir A, Ashe MC, Holden S, Impellizzeri FM, Delahunt E, Dijkstra HP, Mathieson S, Rathleff MS, Reurink G, Sherrington C, Stamatakis E, Vicenzino B, Whittaker JL, Wright AA, Clarke M, Moher D, Page MJ, Khan KM, Winters M (2022) Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the PERSiST (implementing prisma in exercise, rehabilitation, sport medicine and sports science) guidance. Br J Sports Med 56:175–195

    Article  PubMed  Google Scholar 

  32. Rudisill SS, Varady NH, Kucharik MP, Eberlin CT, Martin SD (2023) Evidence-based hamstring injury prevention and risk factor management: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med 51:1927–1942. https://doi.org/10.1177/03635465221083998

    Article  PubMed  Google Scholar 

  33. Andrish JT, Bergfeld JA, Walheim J (1974) A prospective study on the management of shin splints. J Bone Jt Surg Am 56:1697–1700

    Article  CAS  Google Scholar 

  34. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:1–8. https://doi.org/10.1136/bmj.l4898

    Article  Google Scholar 

  35. Konrad A, Nakamura M, Tilp M, Donti O, Behm DG (2022) Foam rolling training effects on range of motion: a systematic review and meta-analysis. Sports Med 52:2523–2535. https://doi.org/10.1007/S40279-022-01699-8

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transpl 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  Google Scholar 

  37. Hayakawa J, Kanda J, Akahoshi Y, Harada N, Kameda K, Ugai T, Wada H, Ishihara Y, Kawamura K, Sakamoto K, Ashizawa M, Sato M, Terasako-Saito K, S. ichi Kimura, M. Kikuchi, R. Yamazaki, S. Kako, Y. (2017) Kanda, meta-analysis of treatment with rabbit and horse antithymocyte globulin for aplastic anemia. Int J Hematol 105:578–586. https://doi.org/10.1007/S12185-017-2179-3/ARTICLE

    Article  CAS  PubMed  Google Scholar 

  38. Komatsu H, Onoguchi G, Jerotic S, Kanahara N, Kakuto Y, Ono T, Funakoshi S, Yabana T, Nakazawa T, H. (2022) Tomita, retinal layers and associated clinical factors in schizophrenia spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 279(27):3592–3616. https://doi.org/10.1038/s41380-022-01591-x

    Article  Google Scholar 

  39. Konrad A, Tilp M, Nakamura M (2021) A comparison of the effects of foam rolling and stretching on physical performance a systematic review and meta-analysis. front Physiol. https://doi.org/10.3389/FPHYS.2021.720531

    Article  PubMed  PubMed Central  Google Scholar 

  40. Behm DG, Alizadeh S, Anvar SH, Drury B, Granacher U, Moran J (2021) Non-local acute passive stretching effects on range of motion in healthy adults: a systematic review with meta-analysis. Sports Med 51:945–959. https://doi.org/10.1007/S40279-020-01422-5

    Article  PubMed  Google Scholar 

  41. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/BMJ.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ekstrand J, Gillquist J, Liljedahl SO (1983) Prevention of soccer injuries. supervision by doctor and physiotherapist. Am J Sports Med 11:116–120

    Article  CAS  PubMed  Google Scholar 

  43. Butler RJ, Crowell HP, Davis IM (2003) Lower extremity stiffness: implications for performance and injury. Clin Biomech (Bristol, Avon) 18:511–517

    Article  PubMed  Google Scholar 

  44. Grimston SK, Engsberg JR, Kloiber R, Hanley DA (1991) Bone mass, external loads, and stress fracture in female runners. Int J Sport Biomech 7:293–302. https://doi.org/10.1123/ijsb.7.3.293

    Article  Google Scholar 

  45. Stone M, Ramsey MW, Kinser AM, O’Bryant HS, Ayers C, Sands WA (2006) Stretching: acute and chronic? the potential consequences. Strength Cond J 28:66–74. https://doi.org/10.1519/00126548-200612000-00010

    Article  Google Scholar 

  46. Wilson GJ, Wood GA, Elliott BC (1991) The relationship between stiffness of the musculature and static flexibility: an alternative explanation for the occurrence of muscular injury. Int J Sports Med 12:403–407. https://doi.org/10.1055/S-2007-1024702

    Article  CAS  PubMed  Google Scholar 

  47. McHugh MP, Connolly DAJ, Eston RG, Kremenic IJ, Nicholas SJ, Gleim GW (1999) The role of passive muscle stiffness in symptoms of exercise-induced muscle damage. Am J Sports Med 27:594–599. https://doi.org/10.1177/03635465990270050801

    Article  CAS  PubMed  Google Scholar 

  48. Kay AD, Blazevich AJ (2009) Moderate-duration static stretch reduces active and passive plantar flexor moment but not achilles tendon stiffness or active muscle length. J Appl Physiol 106:1249–1256. https://doi.org/10.1152/japplphysiol.91476.2008

    Article  PubMed  Google Scholar 

  49. Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA (2008) The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol 586:97–106. https://doi.org/10.1113/jphysiol.2007.140434

    Article  CAS  PubMed  Google Scholar 

  50. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N (2011) Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J Orthop Res 29:1759–1763. https://doi.org/10.1002/jor.21445

    Article  PubMed  Google Scholar 

  51. Kubo K, Kanehisa H, Fukunaga T (2002) Effects of transient muscle contractions and stretching on the tendon structures in vivo. Acta Physiol Scand 175:157–164. https://doi.org/10.1046/j.1365-201X.2002.00976.x

    Article  CAS  PubMed  Google Scholar 

  52. Kato E, Kanehisa H, Fukunaga T, Kawakami Y (2010) Changes in ankle joint stiffness due to stretching: the role of tendon elongation of the gastrocnemius muscle. Eur J Sport Sci 10:111–119. https://doi.org/10.1080/17461390903307834

    Article  Google Scholar 

  53. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T (2001) Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol 90:520–527

    Article  CAS  PubMed  Google Scholar 

  54. Kataura S, Suzuki S, Matsuo S, Hatano G, Iwata M, Yokoi K, Tsuchida W, Banno Y, Asai Y (2017) Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res 31:3403–3410. https://doi.org/10.1519/JSC.0000000000001752

    Article  PubMed  Google Scholar 

  55. Fukaya T, Sato S, Yahata K, Yoshida R, Takeuchi K, Nakamura M (2022) Effects of stretching intensity on range of motion and muscle stiffness: a narrative review. J Bodyw Mov Ther 32:68–76. https://doi.org/10.1016/J.JBMT.2022.04.011

    Article  PubMed  Google Scholar 

  56. Takeuchi K, Nakamura M (2020) Influence of high intensity 20-second static stretching on the flexibility and strength of hamstrings. J Sports Sci Med 19:429–435

    PubMed  PubMed Central  Google Scholar 

  57. Takeuchi K, Nakamura M (2020) The optimal duration of high-intensity static stretching in hamstrings. PLoS ONE 15:e0240181. https://doi.org/10.1371/journal.pone.0240181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takeuchi K, Akizuki K, Nakamura M (2021) Time course of changes in the range of motion and muscle-tendon unit stiffness of the hamstrings after two different intensities of static stretching. PLoS ONE 16:e0257367. https://doi.org/10.1371/JOURNAL.PONE.0257367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takeuchi K, Akizuki K, Nakamura M (2022) Acute effects of different intensity and duration of static stretching on the muscle tendon unit stiffness of the hamstrings. J Sports Sci Med. https://doi.org/10.52082/JSSM.2022.528

    Article  PubMed  PubMed Central  Google Scholar 

  60. Takeuchi K, Akizuki K, Nakamura M (2021) Association between static stretching load and changes in the flexibility of the hamstrings. Sci Rep 11:21778. https://doi.org/10.1038/S41598-021-01274-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Biz C, Nicoletti P, Baldin G, Bragazzi NL, Crimì A, Ruggieri P (2021) Hamstring strain injury (HSI) prevention in professional and semi-professional football teams: a systematic review and meta-analysis. Int J Environ Res Public Health 18:1–11. https://doi.org/10.3390/IJERPH18168272

    Article  Google Scholar 

  62. Bixler B, Jones RL (1992) High-school football injuries: effects of a post-halftime warm-up and stretching routine. Fam Pract Res J 12:131–139

    CAS  PubMed  Google Scholar 

  63. Sugiura Y, Sakuma K, Fujita S, Sakuraba K (2021) Hamstring injury prevention program and recommendation for stride frequency during tow-training optimization. Appl Sci 11:1–11. https://doi.org/10.3390/app11146500

    Article  CAS  Google Scholar 

  64. Dadebo B, White J, George KP (2004) A survey of flexibility training and hamstring strains in professional football clubs in England. Br J Sports Med 38:388–394. https://doi.org/10.1136/bjsm.2002.000044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI with Grant number 22K11595 (Kosuke Takeuchi).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the idea conception and collaborated on the literature review and in producing the figures and tables. KT performed the meta-analysis. All authors collaborated on interpreting the results. KT collaborated in writing the major parts of the manuscript. All authors contributed to the article, approved the submitted version, and read and approved the final manuscript.

Corresponding author

Correspondence to Kosuke Takeuchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Consent involving participants

Consent is not required when conducting a systematic review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, K., Nakamura, M., Fukaya, T. et al. Stretching intervention can prevent muscle injuries: a systematic review and meta-analysis. Sport Sci Health (2024). https://doi.org/10.1007/s11332-024-01213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11332-024-01213-9

Keywords