Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Research on self-purification capacity of Lake Taihu

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An effective measure to cope with eutrophication of lakes is to remove nutrients that can cause algal blooming by taking advantage of natural water purification processes. Here, the term “purification” is defined, in a wide sense, as the potential role of a water body to contribute to the reduction of pollutants and thus controlling eutrophication. Also regarded as a kind of ecological regulating services, biological purification involves various processes concerning seasonal nutrient fixation, such as uptake by aquatic macrophyte, biofouling onto foliage substrates, feeding by organisms in higher trophic level, and eternal loss or removal of substance from the water. In order to evaluate the water purification ability, a numerical lake ecosystem model (EcoTaihu) was developed and applied to Lakes Taihu. The model includes the biological interactions between pelagic compartments (phytoplankton and zooplankton, detritus, dissolved organic matter, fish, and nutrients). Under dynamic forcing of meteorological and hydrological parameters, the model was run over years to evaluate the annual nutrient cycles and purification functions. The reproducibility of the model was validated for water body by comparison with the field data from the water quality monitoring campaign. Numerical results revealed that self-purification capacity of nitrogen of Lake Taihu in years 2006, 2008, and 2010 is 4.00 × 104, 4.27 × 104, and 4.11 × 104 ton, respectively, whereas self-purification capacity of phosphorus of Lake Taihu in years 2006, 2008, and 2010 is 1.56 × 103, 1.80 × 103, and 1.71 × 103 ton, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig 11
Fig 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Albay M, Akcaalan R, Tufekci H, Metcalf JS, Beattie KA, Codd GA (2003) Depth profiles of cyanobacterial hepatotoxins (microcystins) in three Turkish freshwater lakes. Hydrobiologia 505:89–95

    Article  Google Scholar 

  • Cai L-l, Zhu G-W, Zhu M-Y, Xu H, Qin B-Q (2012) Effects of temperature and nutrients on phytoplankton biomass during bloom seasons in Taihu Lake. Water Sci Eng 361–374

  • Chen X-F, Chuai X-M, Zeng J, Liu T, Yang L-Y (2012) Nitrogenous fluxes and its self-purification capacity in Lake Taihu. Huanjing Kexue 33:2309–2314

    Google Scholar 

  • Dong X, Bennion H, Battarbee R, Yang X, Yang H, Liu E (2008) Tracking eutrophication in Taihu Lake using the diatom record: potential and problems. J Paleolimnol 40:413–429

    Article  Google Scholar 

  • Gong Z, Zhang C, Zuo C (2011) Sediment transport following water transfer from Yangtze River to Taihu Basin. Water Sci Eng 4:431–444

    Google Scholar 

  • Guo L (2007) Ecology—doing battle with the green monster of Taihu Lake. Science 317:1166–1166

    Article  CAS  Google Scholar 

  • Hu W, Qin B (2002) A three-dimensional numerical simulation on the dynamics in Taihu Lake, China (IV): transportation and diffusion of conservative substance. Hupo Kexue 14:310–316

    CAS  Google Scholar 

  • Hu C, Hu W, Zhang F, Hu Z, Li X, Chen Y (2006a) Sediment resuspension in the Lake Taihu. China Chin Sci Bull 51:731–737

    Article  Google Scholar 

  • Hu W, Jørgensen SE, Zhang F (2006b) A vertical-compressed three-dimensional ecological model in Lake Taihu, China. Ecol Model 190:367–398

    Article  Google Scholar 

  • Hu W, Zhai S, Zhu Z, Han H (2008) Impacts of the Yangtze River water transfer on the restoration of Lake Taihu. Ecol Eng 34:30–49

    Article  CAS  Google Scholar 

  • Jorgensen SE, Nielsen SN, Jorgensen LA (1991) Handbook of ecological parameters and ecotoxicology.

  • Lu G, Ma Q, Zhang J (2011) Analysis of black water aggregation in Taihu Lake. Water Sci Eng 4:374–385

    CAS  Google Scholar 

  • Mazumder A (1994) Phosphorus chlorophyll relationships under contrasting herbivory and thermal stratification—predictions and patterns. Can J Fish Aquat Sci 51:390–400

    Article  CAS  Google Scholar 

  • Mellor GL, Ezer T, Oey LY (1994) The pressure-gradient conundrum of sigma coordinate ocean models. J Atmos Ocean Technol 11:1126–1134

    Article  Google Scholar 

  • Moiseenko TI (1999) The fate of metals in Arctic surface waters. Method for defining critical levels. Sci Total Environ 236:19–39

    Article  CAS  Google Scholar 

  • Murphy T, Lawson A, Nalewajko C, Murkin H, Ross L, Oguma K, McIntyre T (2000) Algal toxins—initiators of avian botulism? Environ Toxicol 15:558–567

    Article  CAS  Google Scholar 

  • Ostroumov SA (2005) On some issues of maintaining water quality and self-purification. Water Resour 32:305–313

    Article  CAS  Google Scholar 

  • Ostroumov SA (2011) Biocontrol of water quality: multifunctional role of biota in water self-purification. Russ J Gen Chem 80:2754–2761

    Article  Google Scholar 

  • Paerl HW, Huisman J (2008) Climate—blooms like it hot. Science 320:57–58

    Article  CAS  Google Scholar 

  • Phillips G, Pietilainen OP, Carvalho L, Solimini A, Solheim AL, Cardoso AC (2008) Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquat Ecol 42:213–226

    Article  CAS  Google Scholar 

  • Prairie YT, Duarte CM, Kalff J (1989) Unifying nutrient chlorophyll relationships in lakes. Can J Fish Aquat Sci 46:1176–1182

    Article  CAS  Google Scholar 

  • Pyo D, Jin J (2007) Production and degradation of cyanobacterial toxin in water reservoir, Lake Soyang. Bull Korean Chem Soc 28:800–804

    Article  CAS  Google Scholar 

  • Qin B (2002) Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River. Sci Limnol Sin 14:193–202

    CAS  Google Scholar 

  • Qin B (2009) Lake eutrophication: control countermeasures and recycling exploitation. Ecol Eng 35:1569–1573

    Article  Google Scholar 

  • Qin B, Zhu G, Luo L, Gao G, Gu B (2006) Estimation of internal nutrient release in large shallow Lake Taihu, China. Sci China Ser D Earth Sci 49:38–50

    Article  CAS  Google Scholar 

  • Qin B, Xu P, Wu Q, Luo L, Zhang Y (2007) Environmental issues of Lake Taihu, China. Hydrobiologia 581:3–14

    Article  CAS  Google Scholar 

  • Rodriguez MJ, Serodes J-B, Cote PA (1994) Fundamental concepts for the implementation of tools for drinking water quality management in distribution networks. Aqua (Oxford) 43:170–181

    CAS  Google Scholar 

  • Song L, Chen W, Peng L, Wan N, Gan N, Zhang X (2007) Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res 41:2853–2864

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH (1997) The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663–684

    Article  CAS  Google Scholar 

  • Stone R (2011) China aims to turn tide against toxic lake pollution. Science 333:1210–1211

    Article  Google Scholar 

  • Wu T, Qin B, Zhu G, Luo L, Ding Y, Bian G (2013) Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China. Environ Sci Pollut Res 20:8546–8556

    Article  CAS  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Gao G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55:420–432

    Article  CAS  Google Scholar 

  • Xue B, Yao S, Wang S, Xia W (2007) Enrichment of nutrients and analysis of its reason in sediments of different kinds of lakes at middle and lower Yangtze River basin. Quat Sci 27:122–127

    Google Scholar 

  • Zhang J, Wang Z, Song Z, Xie Z, Li L, Song L (2012) Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi. Environ Pollut 164:227–234

    Article  CAS  Google Scholar 

  • Zhang H, Hu W, Gu K, Li Q, Zheng D, Zhai S (2013) An improved ecological model and software for short-term algal bloom forecasting. Environ Model Softw 48:152–162

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the research project “Study on the influence of water level control on submerged vegetation in a lake and the mechanism” (NSFC41230853), State Major Project of Water Pollution Control and Management (Grant No. 2014ZX07101-011), and “Accurate evaluation technology of cyanobacteria bloom stock in the lake”(NIGLAS2012135010). We would like to thank the Taihu Basin Authority of Ministry of Water Resources, Shanghai, China, and Taihu Laboratory for Lake Ecosystem Research, Chinese Academy of Sciences, for providing monitoring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Han.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Zhang, H., Hu, W. et al. Research on self-purification capacity of Lake Taihu. Environ Sci Pollut Res 22, 8201–8215 (2015). https://doi.org/10.1007/s11356-014-3920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3920-6

Keywords