Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bentonite is a porous clay material that shows good performance for adsorbing heavy metals and other pollutants for wastewater remediation. In our previous study, magnetic bentonite (M-B) was prepared to solve the separation problem and improve the operability. In this study, we investigated the influence of various parameters on the Pb(II) adsorption of M-B, and it showed effective performance. About 98.9% adsorption removal rate was achieved within 90 min at adsorbent dose of 10 g/L for initial Pb(II) concentration of 200 mg/L at 40 °C and pH 5. The adsorption kinetic fit well by the pseudo-second-order model, and also followed the intra-particle diffusion model up to 90 min. Moreover, adsorption data were successfully reproduced by the Langmuir isotherm; the maximum adsorption capacity was calculated as 80.40 mg/g. The mechanism of interaction between Pb(II) ions and M-B was ionic exchange, surface complexation, and electro-static interactions. Thermodynamics study indicated that the reaction of Pb(II) adsorption on M-B was endothermic and spontaneous; increasing the temperature promoted adsorption. This study was expected to provide a reference and theoretical basis for the treatment of Pb-containing wastewater using bentonite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Blázquez G, Martín-Lara MA, Dionisio-Ruiz E, Tenorio G, Calero M (2012) Copper biosorption by pine cone shell and thermal decomposition study of the exhausted biosorbent. J Ind Eng Chem 18(5):1741–1750

    Article  CAS  Google Scholar 

  • Cantuaria ML, Neto AFDA, Nascimento ES, Vieira MGA (2015) Adsorption of silver from aqueous solution onto pre-treated bentonite clay: complete batch system evaluation. J Clean Prod 112:1112–1121

    Article  CAS  Google Scholar 

  • Cao JL, Chen XQ, Liu XW, Tan ZY, An LJ, Zhang K (2007) Preparation and application of magnetic bentonite clean water reagent. J Tianjin Univ 40(4):457–462

    CAS  Google Scholar 

  • Chen L, Yu S, Huang L, Wang G (2012) Impact of environmental conditions on the removal of Ni (II) from aqueous solution to bentonite/iron oxide magnetic composites. J Radioanal Nucl Chem 292(3):1181–1191

    Article  CAS  Google Scholar 

  • Chen YG, Sun Z, Ye WM, Cui YJ (2017) Adsorptive removal of Eu(III) from simulated groundwater by GMZ bentonite on the repository conditions. J Radioanal Nucl Chem 311:1839–1847

    Article  CAS  Google Scholar 

  • Daneshvar E, Kousha M, Jokar M, Koutahzadeh N, Guibal E (2012) Acidic dye biosorption onto marine brown macroalgae: isotherms, kinetic and thermodynamic studies. Chem Eng J 204–206(18):225–229

    Article  CAS  Google Scholar 

  • Daou I, Zegaoui O, Amachrouq A (2017) Study of the effect of an acid treatment of a natural Moroccan bentonite on its physicochemical and adsorption properties. Water Sci Technol 75(5):1098–1117

    Article  CAS  Google Scholar 

  • D'Arcy M, Weiss D, Bluck M, Vilar R (2011) Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2-Fe2O3 bi-composite. J Colloid Interf Sci 364:205–212

    Article  CAS  Google Scholar 

  • Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents-a review of the recent literature. Bioresour Technol 101(14):5043–5053

    Article  CAS  Google Scholar 

  • Frantz TS Jr, N S, Quadro MS, Andreazza R, Barcelos AA Jr, C T, Pinto LAA (2017) Cu(II) adsorption from copper mine water by chitosan films and the matrix effects. Environ Sci Pollut Res 24(6):1–10

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Ghorai S, Sarkar AK, Pal S (2014) Rapid adsorptive removal of toxic Pb2+, ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica. Bioresour Technol 170(5):578–582

    Article  CAS  Google Scholar 

  • Gu L, Xu J, Lv L, Liu B, Zhang H, Yu X, Luo ZX (2011) Dissolved organic nitrogen (DON) adsorption by using Al–pillared bentonite. Desalina 269(1–3):206–213

    Article  CAS  Google Scholar 

  • Hamane D, Arous O, Kaouah F, Trari M, Kerdjoudj H, Bendjama Z (2015) Adsorption/ photo–electrodialysis combination system for Pb2+, removal using bentonite/ membrane/ semiconductor. J Environ Chem Eng 3(1):60–69

    Article  CAS  Google Scholar 

  • Hu B, Luo H, Chen H, Dong T (2011) Adsorption of chromate and para-nitrochlorobenzene on inorganic-organic montmorillonite. Appl Clay Sci 51(1–2):198–201

    Article  CAS  Google Scholar 

  • Jin MJ, Long MC, Su HR, Pan Y, Zhang QZ, Wang J, Zhou BX, Zhang YW (2016) Magnetically separable maghemite/montmorillonite composite as an efficient heterogeneous Fenton–like catalyst for phenol degradation. Environ Sci Pollut Res 24(2):1926–1937

    Article  CAS  Google Scholar 

  • Kameda T, Umetsu M, Kumagai S, Yoshioka T (2018) Equilibrium studies of the adsorption of aromatic disulfonates by Mg–Al oxide. J Physi Chem Sol 114:129–132

    Article  CAS  Google Scholar 

  • Kang Q, Zhou W, Li Q, Gao B, Fan J, Shen D (2009) Adsorption of anionic dyes on poly(epicholorohydrin dimethylamine) modified bentonite in single and mixed dye solutions. Appl Clay Sci 45(4):280–287

    Article  CAS  Google Scholar 

  • Kul AR, Koyuncu H (2010) Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study. J Hazard Mater 179(1):332–339

    Article  CAS  Google Scholar 

  • Lian L, Cao X, Wu Y, Sun D, Lou D (2014) A green synthesis of magnetic bentonite material and its application for removal of microcystin-LR in water. Appl Surf Sci 289(8):245–251

    Article  CAS  Google Scholar 

  • Liu M, Hou LA, Xi B, Zhao Y, Xia X (2013) Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash. Appl Surf Sci 273(100):706–716

    Article  CAS  Google Scholar 

  • Milonjic SK (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc 72(12):1363–1367

    Article  CAS  Google Scholar 

  • Mo W, He Q, Su X, Ma S, Feng J, He Z (2017) Preparation and characterization of a granular bentonite composite adsorbent and its application for Pb2+ adsorption. Appl Clay Sci 159(6):68–73

    Google Scholar 

  • Mohseni-Bandpi A, Al-Musawi TJ, Ghahramani E, Zarrabi M, Mohebi S, Vahed SA (2016) Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J Mol Liq 218:615–624

    Article  CAS  Google Scholar 

  • Monfared AD, Ghazanfari MH, Jamialahmadi M, Helalizadeh A (2015) Adsorption of silica nanoparticles onto calcite: equilibrium, kinetic, thermodynamic and DLVO analysis. Chem Eng J 281(1):334–344

    Article  CAS  Google Scholar 

  • Moussout H, Ahlafi H, Aazza M, Zegaoui O, El AC (2016) Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5% bentonite/chitosan. Water Sci Technol 73(9):2199–2210

    Article  CAS  Google Scholar 

  • Olu-Owolabi BI, Popoola DB, Unuabonah EI (2010) Removal of Cu2+ and Cd2+ from aqueous solution by bentonite clay modified with binary mixture of goethite and humic acid. Water Air Soil Poll 211(1–4):459–474

    Article  CAS  Google Scholar 

  • Oubagaranadin JUK, Murthy ZVP, Mallapur VP (2010) Removal of Cu(II) and Zn(II) from industrial wastewater by acid-activated montmorillonite-illite type of clay. C R Chim 13(11):1359–1363

    Article  CAS  Google Scholar 

  • Pan DQ, Fan QH, Li P, Liu SP, Wu WS (2011) Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem Eng J 172(2):898–905

    Article  CAS  Google Scholar 

  • Shah J, Jan MR, Muhammad M, Ara B, Fahmeeda F (2017) Kinetic and equilibrium profile of the adsorptive removal of acid red 17 dye by surfactant-modified fuller’s earth. Water Sci Technol 75(6):1410–1420

    Article  CAS  Google Scholar 

  • Shi H S, Liu Y H (2006) Adsorption characteristics of bentonite to Pb2+, Zn2+, Cr(VI), Cd2+. J Build Mater 9(5):507–510

  • Shi J, Zhao ZW, Liang ZJ, Sun TY (2016) Adsorption characteristics of Pb(II) from aqueous solutions onto a natural biosorbent, fallen arborvitae leaves. Water Sci Technol 73(10):2422–2429

    Article  CAS  Google Scholar 

  • Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS (2002) The role of sawdust in the removal of unwanted materials from water. J Hazard Mater 95(1):137–152

    Article  CAS  Google Scholar 

  • Singanan M (2011) Removal of lead (II) and cadmium (II) ions from wastewater using activated biocarbon. Sci Asia 37115(37):115–119

    Article  CAS  Google Scholar 

  • Tunali S, Akar T, Özcan AS, Kiran I, Özcan A (2006) Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47(3):105–112

    Article  CAS  Google Scholar 

  • Yao QX, Xie JJ, Liu JX, Kang HM, Liu Y (2014) Adsorption of lead ions using a modified lignin hydrogel. J Poly Res 21(6):465

    Article  CAS  Google Scholar 

  • Yi ZJ, Yao J, Kuang YF, Chen HL, Wang F, Yuan ZM (2015) Removal of Pb(II) by adsorption onto Chinese walnut shell activated carbon. Water Sci Technol 72(6):983–989

    Article  CAS  Google Scholar 

  • Zou C, Liang J, Jiang W, Guan Y, Zhang Y (2018) Adsorption behavior of magnetic bentonite for removing (II) from aqueous solutions. RSC Adv 8(48):27587–27595

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for financial support from “Liaoning BaiQianWan Talents Program” and the China Environmental Protection Foundation, Geping Green Action, “123 Project” (Grant No. CEPF2014-123-1-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyan Liang.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Electronic supplementary material

ESM 1

(DOC 8104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, C., Jiang, W., Liang, J. et al. Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite. Environ Sci Pollut Res 26, 1315–1322 (2019). https://doi.org/10.1007/s11356-018-3652-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3652-0

Keywords