Abstract
Recent advances in connected vehicles and autonomous driving are going to change the face of ground transportation as we know it. This paper describes the design and evaluation of several emerging applications for such a cyber transportation system (CTS). These applications have been designed using holistic approaches, which consider the unique roles played by the human drivers, the transportation system, and the communication network. They can improve driver safety and provide on-road infotainment. They can also improve transportation operations and efficiency, thereby benefiting travelers and attracting investment from both government agencies and private businesses to deploy infrastructures and bootstrap the evolutionary process of CTS.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Slavik M, Mahgoub I. Spatial distribution and channel quality adaptive protocol for multihop wireless broadcast routing in VANET. IEEE Transactions on Mobile Computing, 2013, 12(4): 722-734.
Guo L, Huang S, Sadek A W. An evaluation of likely environmental benefits of a time-dependent green routing system in the greater Buffalo-Niagara region. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2013, 17(1): 18-30.
Barnum D T, Karlaftis M G, Tandon S. Improving the efficiency of metropolitan area transit by joint analysis of its multiple providers. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(6): 1160-1176.
U.S. Department of Transportation. Safety pilot program overview, www.its.dot.gov/safety_pilot/spmd.htm, May 2014.
Markoff J. Google cars drive themselves in traffic. The New York Times, October 2010. http://www.nytimes.com/2010/10/10/science/10google.html?pagewanted=all, May 2014.
Zhang Y, Wu C, Wan J, Qiao C. Development and validation of warning message utility scale (WMUS). Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2013, 57(1): 1179-1183.
Farah H, Koutsopoulos H N, Saifuzzaman H et al. Evaluation of the effect of cooperative infrastructure-to-vehicle systems on driver behavior. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 42-56.
Marshall D, Lee J D, Austria R A. Alerts for in-vehicle information systems: Annoyance, urgency, and appropriateness. Human Factors, 2007, 49(1): 145-157.
Jamson A H, Merat N. Surrogate in-vehicle information systems and driver behavior: Effects of visual and cognitive load in rural driving. Transportation Research Part F: Traffic Psychology and Behaviour, 2005, 8(2): 79-96.
Donmez B, Boyle L N, Lee J D. The impact of distraction mitigation strategies on driving performance. Human Factors, 2006, 48(4): 785-804.
Verwey W B. On-line driver workload estimation: Effects of road situation and age on secondary task measures. Ergonomics, 2000, 43(2): 187-209.
SAE International. Its in-vehicle message priority. Standard, J2395, 2002. http://subscriptions.sae.org/content/j2395_200-202, May 2014.
Sohn H, Lee J D, Bricker D L et al. A dynamic programming algorithm for scheduling in-vehicle messages. IEEE Trans. Intelligent Transportation Systems, 2008, 9(2): 226-234.
Wu C, Liu Y. Queuing network modeling of driver workload and performance. IEEE Trans. Intelligent Transportation Systems, 2007, 8(3): 528-537.
Li X, Yu X, Wagh A, Qiao C. Human factors-aware service scheduling in vehicular cyber-physical systems. In Proc. IEEE International Conference on Computer Communications, April 2011, pp.2174-2182.
Guo M, Ammar M H, Zegura E W. V3: A vehicle-to-vehicle live video streaming architecture. In Proc. the 3rd Int. Conf. Pervasive Comp. and Commun., March 2005, pp.171-180.
Yoon S, Ha D T, Ngo H Q, Qiao C. MoPADS: A mobility profile aided file downloading service in vehicular networks. IEEE Trans. Vehicular Technology, 2009, 58(9): 5235-5246.
Chu Y, Huang N. Delivering of live video streaming for vehicular communication using peer-to-peer approach. In Proc. Mobile Networking for Vehicular Environments, May 2007, pp.1-6.
Cheng H T, Shan H, Zhuang W. Infotainment and road safety service support in vehicular networking: From a communication perspective. Mechanical Systems and Signal Processing, 2011, 25(6): 2020-2038.
Bucciol P, Masala E, Kawaguchi N, Takeda K, De Martin J. Performance evaluation of H. 264 video streaming over inter-vehicular 802.11 ad hoc networks. In Proc. the 16th Int. Symp. Personal, Indoor and Mobile Radio Communications, Sept. 2005, pp.1936-1940.
Xue J, Chen C W. A new perceptual quality metric for video transrating for mobile devices. In Proc. the 2010 ACM Multimedia Workshop on Mobile Cloud Media Computing, Oct. 2010, pp.35-40.
Song W, Tjondronegoro D W, Wang S et al. Impact of zooming and enhancing region of interests for optimizing user experience on mobile sports video. In Proc. the 18th ACM Int. Conf. Multimedia, Oct. 2010, pp.321-330.
Dobrian F, Sekar V, Awan A et al. Understanding the impact of video quality on user engagement. In Proc. the ACM SIGCOMM Conference, Aug. 2011, pp.362-373.
Tan W L, Lau W C, Yue O, Hui T H. Analytical models and performance evaluation of drive-thru internet systems. IEEE J. Selected Areas in Communications, 2011, 29(1): 207-222.
He K, Li X, Schick B, Qiao C, Sudhaakar R, Addepalli S, Chen X. On-road video delivery with integrated heterogeneous wireless networks. Ad Hoc Networks, 2013, 11(7): 1992-2001.
Morwitza V G, Steckela J H, Guptab A. When do purchase intentions predict sales? Int. J. Forecasting, 2007, 23(3): 347-364.
Sun B, Morwitz V G. Stated intentions and purchase behavior: A unified model. International Journal of Research in Marketing, 2010, 27(4): 356-366.
Goldfarb A, Tucker C. Online advertising. Advances in Computers, 2011, 81: 289-315.
Liu N, Liu M, Cao J et al. When transportation meets communication: V2P over VANETs. In Proc. the 30th IEEE Int. Conf. Distributed Computing Systems, Jun. 2010, pp.567-576.
Deshpande P, Kashyap A, Sung C, Das S R. Predictive methods for improved vehicular WiFi access. In Proc. the 7th International Conference on Mobile Systems, Applications, and Services, June 2009, pp.263-276.
Ge Y, Liu C, Xiong H, Chen J. A taxi business intelligence system. In Proc. the 17th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Aug. 2011, pp.735-738.
Yuan J, Zheng Y, Zhang C et al. T-drive: Driving directions based on taxi trajectories. In Proc. the 18th SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, Nov. 2010, pp.99-108.
Seow K T, Dang N H, Lee D. A collaborative multiagent taxi-dispatch system. IEEE Trans. Automation Science and Engineering, 2010, 7(3): 607-616.
Alshamsi A, Abdallah S, Rahwan I. Multiagent self-organization for a taxi dispatch system. In Proc. the 8th Int. Conf. Autonomous Agents and Multiagent Systems, May 2009, pp.21-28.
Hou Y, Li X, Zhao Y et al. Towards efficient vacant taxis cruising guidance. In Proc. IEEE Global Communications Conference, Dec. 2013.
Zhang D, Li Y, Zhang F, Lu M, Liu Y, He T. coRide: Car-pool service with a win-win fare model for large-scale taxicab networks. In Proc. the 11th ACM Conference on Embedded Networked Sensor Systems, Nov. 2013, Article No.9.
Chen P, Liu J, Chen W. A fuel-saving and pollution-reducing dynamic taxi-sharing protocol in VANETs. In Proc. the 72nd IEEE Vehicular Technology Conf. Fall, Sept. 2010, pp.1-5.
Chen C, Shallcross D, Shih Y et al. Smart ride share with flexible route matching. In Proc. the 13th Int. Conf. Advanced Communication Technology, Feb. 2011, pp.1506-1510.
Hou Y, Li X, Qiao C. TicTac: From transfer-incapable car-pooling to transfer-allowed carpooling. In Proc. IEEE Global Communications Conference, Dec. 2012, pp. 268-273.
Zhao Y, Wagh A, Hulme K et al. Integrated traffic-driving-networking simulator: A unique R&D tool for connected vehicles. In Proc. Int. Conf. Connected Vehicles and Expo, Dec. 2012, pp.203-204.
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was partially supported by the National Science Foundation of USA under Grant No. NSF-CPS-1035733, the Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao of the National Natural Science Foundation of China under Grant No. 61228207, and the Cisco University Research Program.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 73 kb)
Rights and permissions
About this article
Cite this article
Wagh, A., Hou, Y., Qiao, C. et al. Emerging Applications for Cyber Transportation Systems. J. Comput. Sci. Technol. 29, 562–575 (2014). https://doi.org/10.1007/s11390-014-1450-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11390-014-1450-9