Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Clustering Algorithm for Planning the Integration Process of a Large Number of Conceptual Schemas

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

When tens and even hundreds of schemas are involved in the integration process, criteria are needed for choosing clusters of schemas to be integrated, so as to deal with the integration problem through an efficient iterative process. Schemas in clusters should be chosen according to cohesion and coupling criteria that are based on similarities and dissimilarities among schemas. In this paper, we propose an algorithm for a novel variant of the correlation clustering approach that addresses the problem of assisting a designer in integrating a large number of conceptual schemas. The novel variant introduces upper and lower bounds to the number of schemas in each cluster, in order to avoid too complex and too simple integration contexts respectively. We give a heuristic for solving the problem, being an NP hard combinatorial problem. An experimental activity demonstrates an appreciable increment in the effectiveness of the schema integration process when clusters are computed by means of the proposed algorithm w.r.t. the ones manually defined by an expert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Batini C, Lenzerini M, Navathe S B. A comparative analysis of methodologies for database schema integration. ACM Comput. Surv., 1986, 18(4): 323-364.

    Article  Google Scholar 

  2. Spaccapietra S, Parent C, Dupont Y. Model independent assertions for integration of heterogeneous schemas. The VLDB J., 1992, 1(1): 81-126.

    Article  Google Scholar 

  3. Spaccapietra S, Parent C. View integration: A step forward in solving structural conflicts. IEEE Trans. Knowl. Data Eng., 1994, 6(2): 258-274.

    Article  Google Scholar 

  4. Yang X, Procopiuc C, Srivastava D. Summarizing relational databases. Proc. VLDB Endowment, 2009, 2(1): 634-645.

    Article  Google Scholar 

  5. Wang X, Zhou X, Wang S. Summarizing large-scale database schema using community detection. J. Comput. Sci. Technol., 2012, 27(3): 515-526.

    Article  Google Scholar 

  6. Yasir A, Kumara Swamy M, Krishna Reddy P. Exploiting schema and documentation for summarizing relational databases. In Proc. the 1st Int. Conf. Big Data Analytics, Dec. 2012, pp.77-90.

  7. Algergawy A, Schallehn E, Saake G. A schema matchingbased approach to XML schema clustering. In Proc. the 10th Int. Conf. Information Integration and Web-Based Applications Services, Nov. 2008, pp.131-136.

  8. Lee M L, Yang L H, Hsu W, Yang X. XClust: Clustering XML schemas for effective integration. In Proc. the 11th CIKM, Nov. 2002, pp.292-299.

  9. Batini C, Ceri S, Navathe S B. Conceptual Database Design: An Entity-Relationship Approach (1st edition). Benjamin/Cummings Publishing Co., 1992.

  10. Jain A K, Murty M N, Flynn P J. Data clustering: A review. ACM Comput. Surv., 1999, 31(3): 264-323.

    Article  Google Scholar 

  11. Moody D L, Flitman A R. A decomposition method for entity relationship models: A systems theoretic approach. In Proc. the 1st Int. Conf. Systems Thinking in Management, Nov. 2000, pp.462-469.

  12. Batini C, Di Battista G, Santucci G. Structuring primitives for a dictionary of entity relationship data schemas. IEEE Trans. Software Engineering, 1993, 19(4): 344-365.

    Article  Google Scholar 

  13. Smith K, Mork P, Seligman L et al. The role of schema matching in large enterprises. In Proc. the 4th Biennial Conf. Innovative Data Systems Research, Jan. 2009.

  14. Nayak R, Iryadi W. XML schema clustering with semantic and hierarchical similarity measures. Knowledge-Based Systems, 2007, 20(4): 336-349.

    Article  Google Scholar 

  15. Banek M, Vrdoljak B, Min Tjoa A, Skocir Z. Automated integration of heterogeneous data warehouse schemas. Int. J. Data Warehousing and Mining, 2008, 4(4): 1-21.

    Article  Google Scholar 

  16. Guerra F, Olaru M O, Vincini M. Mapping and integration of dimensional attributes using clustering techniques. In Proc. the 13th Int. Conf. E-Commerce and Web Technologies, Sept. 2012, pp.38-49.

  17. Mahmoud H A, Aboulnaga A. Schema clustering and retrieval for multi-domain pay-as-you-go data integration systems. In Proc. Int. Conf. Management of Data, Jun. 2010, pp.411-422.

  18. Otham R, Deris S, Illias R, Zakaria Z, Mohamed S. Automatic clustering of gene ontology by genetic algorithm. Int. J. Information Technology, 2006, 3(1): 37-46.

    Google Scholar 

  19. Hu W, Qu Y, Cheng G. Matching large ontologies: A divide-and-conquer approach. Data & Knowledge Engineering, 2008, 67(1): 140-160.

    Article  Google Scholar 

  20. Zhao Y, Karypis G, Fayyad U. Hierarchical clustering algorithms for document datasets. Data Mining and Knowledge Discovery, 2005, 10(2): 141-168.

    Article  MathSciNet  Google Scholar 

  21. Bansal N, Blum A, Chawla S. Correlation clustering. Machine Learning, 2004, 56(1/2/3): 89-113.

  22. Bonizzoni P, Della Vedova G, Dondi R, Jiang T. On the approximation of correlation clustering and consensus clustering. J. Comput. Syst. Sci., 2008, 74(5): 671-696.

    Article  MATH  MathSciNet  Google Scholar 

  23. Charikar M, Guruswami V, Wirth A. Clustering with qualitative information. J. Comput. Syst. Sci., 2005, 71(3): 360-383.

    Article  MATH  MathSciNet  Google Scholar 

  24. Demaine E, Emanuel D, Fiat A, Immorlica N. Correlation clustering in general weighted graphs. Theoretical Computer Science, 2006, 361(2): 172-187.

    Article  MATH  MathSciNet  Google Scholar 

  25. Papadimitriou C, Steiglitz K. Combinatorial Optimization: Algorithms and Complexity. Dover Publications, 1998.

  26. Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties (1st edition). Springer-Verlag, 1999.

  27. Batini C, Comerio M, Viscusi G. Managing quality of large set of conceptual schemas in public administration: Methods and experiences. In Proc. the 2nd Int. Conf. Model and Data Engineering, Oct. 2012, pp.31-42.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Batini.

Additional information

The work was partially supported by the Italian Project PON01 00861 SMART (Services and Meta-services for smART eGovernment) and by the Project (CUP E41l13000220009) SPAC3 (Smart services of the new Public Administration for the Citizen-Centricity in the Cloud) co-financed by the Lombardy region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batini, C., Bonizzoni, P., Comerio, M. et al. A Clustering Algorithm for Planning the Integration Process of a Large Number of Conceptual Schemas. J. Comput. Sci. Technol. 30, 214–224 (2015). https://doi.org/10.1007/s11390-015-1514-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-015-1514-5

Keywords