Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

You cannot do this alone! Increasing task interdependence in cooperative educational videogames to encourage collaboration

  • Development Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

Complex, multimedia software such as educational videogames offer a wide range of elements to modify learner behavior. The adjustment of such software might support learning, especially in complex settings like collaborative or cooperative scenarios. Coming from a theoretical background of educational psychology, our experiment seeks to implement the “jigsaw strategy” within educational videogames. We conducted an experiment with sixty participants to compare conditions with or without increased task interdependence through the jigsaw strategy (i.e., the distribution of game elements and essential information). The participants had to rebuild a house from the 1894 novel Effi Briest within an adjusted version of the “sandbox” game Minecraft. The results show increased play performance, and learning outcomes with increased task interdependence. We conducted mediator and moderator analysis, which revealed a strong impact of play performance on learning outcomes. Additional analyses of mental effort, cognitive load, and efficiency allowed for deep insights into the playing and learning process. These insights enrich current theories about collaboration, mental strain, and the working memory effect and highlight the applicability of collaborative mechanics within educational videogames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • AbuSeileek, A. F. (2012). The effect of computer-assisted cooperative learning methods and group size on the EFL learners’ achievement in communication skills. Computers & Education, 58(1), 231–239.

    Article  Google Scholar 

  • Aronson, E. (1997). The jigsaw classroom: Building cooperation in the classroom. Glenview: Scott Foresman & Company.

    Google Scholar 

  • Azadegan, A., & Harteveld, C. (2014). Work for or against players: On the use of collaboration engineering for collaborative games. Foundations of Digital Games.

  • Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173.

    Article  Google Scholar 

  • Baumert, J., Stanat, P., & Demmrich, A. (2001). PISA 2000: Untersuchungsgegenstand, theoretische Grundlagen und Durchführung der Studie PISA 2000 (pp. 15–68): Springer: New York.

  • Bopp, M. (2006). Didactic analysis of digital games and game-based learning. In M. Pivec (Ed.), Affective and emotional aspects of human-computer interaction: Game-based and innovative learning approaches (Vol. 1, pp. 8–37). Amsterdam: IOS Press.

    Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. London: Routledge.

    Google Scholar 

  • Deiglmayr, A., & Schalk, L. (2015). Weak versus strong knowledge interdependence: A comparison of two rationales for distributing information among learners in collaborative learning settings. Learning and Instruction, 40, 69–78. doi:10.1016/j.learninstruc.2015.08.003.

    Article  Google Scholar 

  • Dillenbourg, P. (1999). What do you mean by collaborative learning? Collaborative-learning: Cognitive and Computational Approaches, 1, 1–19.

    Google Scholar 

  • Dillenbourg, P., Baker, M. J., Blaye, A., & O’Malley, C. (1995). The evolution of research on collaborative learning. Learning in Humans and Machine, 189–211

  • Diziol, D., Walker, E., Rummel, N., & Koedinger, K. R. (2010). Using intelligent tutor technology to implement adaptive support for student collaboration. Educational Psychology Review, 22(1), 89–102.

    Article  Google Scholar 

  • Eysink, T. H., de Jong, T., Berthold, K., Kolloffel, B., Opfermann, M., & Wouters, P. (2009). Learner performance in multimedia learning arrangements: An analysis across instructional approaches. American Educational Research Journal, 46, 1107–1149. doi:10.3102/0002831209340235.

    Article  Google Scholar 

  • Fontane, T. (2015). Effi Briest: OUP Oxford.

  • Fu, F.-L., Wu, Y.-L., & Ho, H.-C. (2009). An investigation of coopetitive pedagogic design for knowledge creation in Web-based learning. Computers & Education, 53, 550–562. doi:10.1016/j.compedu.2009.01.004.

    Article  Google Scholar 

  • Hadwin, A. F., Järvelä, S., & Miller, M. (2011). Self-regulated, co-regulated, and socially shared regulation of learning. Handbook of self-regulation of learning and performance, 30, 65–84.

    Google Scholar 

  • Hayes, A. F. (2008). INDIRECT. Retrieved from http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html

  • Huber, G., & Huber, A. (2008). Structuring group interaction to promote thinking and learning during small group learning in high school settings. In R. Gillies, A. Ashman, & J. Terwel (Eds.), The teacher’s role in implementing cooperative learning in the classroom (Vol. 8, pp. 110–131). New York: Springer.

    Chapter  Google Scholar 

  • Janssen, J., Kirschner, F., Erkens, G., Kirschner, P. A., & Paas, F. (2010). Making the black box of collaborative learning transparent: Combining process-oriented and cognitive load approaches. Educational Psychology Review, 22(2), 139–154.

    Article  Google Scholar 

  • Johnson, D. W., Johnson, R. T., & Smith, K. A. (1998). Cooperative learning returns to college what evidence is there that it works? Change: The Magazine of Higher Learning, 30(4), 26–35. doi:10.1080/00091389809602629.

    Article  Google Scholar 

  • Johnson, R. T., Johnson, D. W., & Stanne, M. B. (1986). Comparison of computer-assisted cooperative, competitive, and individualistic learning. American Educational Research Journal, 23, 382–392. doi:10.3102/00028312023003382.

    Article  Google Scholar 

  • Johnson, D. W., Maruyama, G., Johnson, R., Nelson, D., & Skon, L. (1981). Effects of cooperative, competitive, and individualistic goal structures on achievement: A meta-analysis. Psychological Bulletin, 89, 47. doi:10.1037/0033-2909.89.1.47.

    Article  Google Scholar 

  • Ke, F., & Grabowski, B. (2007). Gameplaying for maths learning: cooperative or not? British Journal of Educational Technology, 38, 249–259. doi:10.1111/j.1467-8535.2006.00593.x.

    Article  Google Scholar 

  • King, A. (2008). Structuring peer interaction to promote higher-order thinking and complex learning in cooperating groups. In R. Gillies, A. Ashman, & J. Terwel (Eds.), The teacher’s role in implementing cooperative learning in the classroom (Vol. 8, pp. 73–91). New York: Springer.

    Chapter  Google Scholar 

  • Kirschner, P. A., Beers, P. J., Boshuizen, H. P., & Gijselaers, W. H. (2008). Coercing shared knowledge in collaborative learning environments. Computers in Human Behavior, 24(2), 403–420.

    Article  Google Scholar 

  • Kirschner, F., Paas, F., & Kirschner, P. A. (2011a). Task complexity as a driver for collaborative learning efficiency: The collective working-memory effect. Applied Cognitive Psychology, 25(4), 615–624.

    Article  Google Scholar 

  • Kirschner, F., Paas, F., Kirschner, P. A., & Janssen, J. (2011b). Differential effects of problem-solving demands on individual and collaborative learning outcomes. Learning and Instruction, 21(4), 587–599.

    Article  Google Scholar 

  • Kooloos, J. G., Klaassen, T., Vereijken, M., Van Kuppeveld, S., Bolhuis, S., & Vorstenbosch, M. (2011). Collaborative group work: Effects of group size and assignment structure on learning gain, student satisfaction and perceived participation. Medical Teacher, 33(12), 983–988.

    Article  Google Scholar 

  • Krell, M. (2015). Evaluating an instrument to measure mental load and mental effort using Item Response Theory. Science Education Review Letters, 2015

  • Leemkuil, H., De Jong, T., De Hoog, R., & Christoph, N. (2003). KM QUEST: A collaborative Internet-based simulation game. Simulation & Gaming, 34(1), 89–111.

    Article  Google Scholar 

  • Lohman, M., & Finkelstein, M. (2000). Designing groups in problem-based learning to promote problem-solving skill and self-directedness. Instructional Science, 28(4), 291–307. doi:10.1023/A:1003927228005.

    Article  Google Scholar 

  • Lou, Y., Abrami, P. C., & d’Apollonia, S. (2001). Small group and individual learning with technology: A meta-analysis. Review of Educational Research, 71(3), 449–521.

    Article  Google Scholar 

  • Lou, Y., Abrami, P. C., Spence, J. C., Poulsen, C., Chambers, B., & d’Apollonia, S. (1996). Within-class grouping: A meta-analysis. Review of Educational Research, 66(4), 423–458.

    Article  Google Scholar 

  • Manzey, D. (1998). Psychophysiologie mentaler Beanspruchung. Ergebnisse und Anwendungen der Psychophysiologie. Enzyklopädie der Psychologie, 100, 799–864.

    Google Scholar 

  • MINECRAFT. (2011). [Developed by Mojang]: Mojang.

  • MINECRAFTEDU. (2013). [Developed by Teacher Gaming].

  • Mullins, D., Rummel, N., & Spada, H. (2011). Are two heads always better than one? Differential effects of collaboration on students’ computer-supported learning in mathematics. International Journal of Computer-Supported Collaborative Learning, 6(3), 421–443.

    Article  Google Scholar 

  • Myhill, C. (2004). Commercial success by looking for desire lines. In M. Masoodian, S. Jones, & B. Rogers (Eds.), Computer Human interaction: 6th Asia Pacific Conference, APCHI 2004, Rotorua, New Zealand, June 29July 2, 2004. Proceedings (pp. 293–304). Springer Heidelberg.

  • Nebel, S., Schneider, S., & Rey, G. D. (2016). Mining learning and crafting scientific experiments: a literature review on the use of minecraft in education and research. Journal of Educational Technology & Society, 19(2), 355–366.

    Google Scholar 

  • Nickel-Bacon, I. (2006). Positionen der Literaturdidaktik–Methoden des Literaturunterrichts. Ein heuristischer Explikationsversuch für die empirische Grundlagenforschung. Empirische Unterrichtsforschung in der Literatur und Lesedidaktik. Ein Weiterbildungsprogramm.

  • Oksanen, K. (2013). Subjective experience and sociability in a collaborative serious game. Simulation & Gaming, 1046878113513079.

  • Peppler, K., Danish, J. A., & Phelps, D. (2013). Collaborative gaming: Teaching children about complex systems and collective behavior. Simulation & Gaming, 1046878113501462.

  • Peterson, P. L., & Janicki, T. C. (1979). Individual characteristics and children’s learning in large-group and small-group approaches. Journal of Educational Psychology, 71(5), 677.

    Article  Google Scholar 

  • Plass, J. L., O’Keefe, P. A., Homer, B. D., Case, J., Hayward, E. O., Stein, M., et al. (2013). The impact of individual, competitive, and collaborative mathematics game play on learning, performance, and motivation. Journal of Educational Psychology, 105, 1050–1066. doi:10.1037/a0032688.

    Article  Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891.

    Article  Google Scholar 

  • Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422.

    Article  Google Scholar 

  • Slavin, R. E. (1980). Cooperative learning. Review of Educational Research, 50(2), 315–342.

    Article  Google Scholar 

  • Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: A meta-analysis. Review of Educational Research, 69(1), 21–51.

    Article  Google Scholar 

  • Staiano, A. E., Abraham, A. A., & Calvert, S. L. (2012). Competitive versus cooperative exergame play for African American adolescents’ executive function skills: short-term effects in a long-term training intervention. Developmental Psychology, 48, 337. doi:10.1037/a0026938.

    Article  Google Scholar 

  • Stevens, R. (2008). Cooperative Learning and Literacy Instruction in Middle Level Education. In R. Gillies, A. Ashman, & J. Terwel (Eds.), The teacher’s role in implementing cooperative learning in the classroom (Vol. 8, pp. 92–109). New York: Springer.

    Chapter  Google Scholar 

  • Sung, H.-Y., & Hwang, G.-J. (2013). A collaborative game-based learning approach to improving students’ learning performance in science courses. Computers & Education, 63, 43–51.

    Article  Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285. doi:10.1016/0364-0213(88)90023-7.

    Article  Google Scholar 

  • Sweller, J., van Merrienboer, J. G., & Paas, F. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296. doi:10.1023/A:1022193728205.

    Article  Google Scholar 

  • Teasley, S. D., & Roschelle, J. (1993). Constructing a joint problem space: The computer as a tool for sharing knowledge. Computers as Cognitive Tools, 229–258.

  • Van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist, 43(1), 16–26. doi:10.1080/00461520701756248.

    Article  Google Scholar 

  • Warner, R. M. (2008). Applied statistics: From bivariate through multivariate techniques. Thousand Oaks, CA: Sage.

    Google Scholar 

  • WORLD OF WARCRAFT. (2004). [Developped by Blizzard Entertainment]: Vivendi & Activision Blizzard.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Nebel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nebel, S., Schneider, S., Beege, M. et al. You cannot do this alone! Increasing task interdependence in cooperative educational videogames to encourage collaboration. Education Tech Research Dev 65, 993–1014 (2017). https://doi.org/10.1007/s11423-017-9511-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-017-9511-8

Keywords