Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Event-Triggered Consensus for Multiple Nonholonomic Systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The paper investigates the consensus problem of multiple nonholonomic systems. Two event-triggered control strategies, one centralized and the other distributed, are developed, which can reduce the frequency of control updating. Under the proposed protocols, the multiple nonholonomic systems can achieve consensus, and the bound of inter-event time intervals is provided to illustrate that no Zeno behavior exists. Finally, numerical simulations are also provided to demonstrate the effectiveness of the proposed control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jadbabaie A, Lin J, and Morse A S, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Conference on Decision and Control, 2003, 48(6): 988–1001.

    MathSciNet  MATH  Google Scholar 

  2. Fax J A and Murray R M, Information flow and cooperative control of vehicle formations, IEEE Transactions on Automatic Control, 2002, 35(1): 115–120.

    Google Scholar 

  3. Yao Y, Cooperative navigation system for multiple unmanned underwater vehicles, Intelligent Control & Automation Science, 2013, 46(20): 719–723.

    Google Scholar 

  4. Garcia-Sanz M, Cooperative control of multiple spacecraft flying in formation, IET Control Theory & Applications, 2007, 1(2): 443–444.

    Article  MathSciNet  Google Scholar 

  5. Olfati-Saber R and Murray R M, Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 2015, 49(9): 1520–1533.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang Z H, You K Y, Xu J J, et al., Consensus design for continuous-time multi-agent systems with communication delay, Journal System Sciences & Complexity, 2014, 27(4): 701–711.

    Article  MathSciNet  MATH  Google Scholar 

  7. Qin W, Liu Z X, and Chen Z Q, Impulsive observer-based consensus control for multi-agent systems with time delay, International Journal of Control, 2015, 88(9): 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  8. Li S H, Du H B, and Lin X Z, Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 2011, 47(8): 1706–1712.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao J and Liu G P, Time-variant consensus tracking control for networked planar multi-agent systems with non-holonomic constraints, Journal of Systems Science & Complexity, 2017, 30(2): 396–418.

    Article  MathSciNet  Google Scholar 

  10. Divelbiss A W and Wen J T, Trajectory tracking control of a car-trailer system, IEEE Transactions on Control Systems Technology, 1997, 5(3): 269–278.

    Article  Google Scholar 

  11. Liu H D, Liang B, Wang X Q, et al., Autonomous path planning and experiment study of free-floating space robot for spinning satellite capturing, International Conference on Control Automation Robotics & Vision, Singapore, 2014.

    Google Scholar 

  12. Zhai G S, Takeda J, Imae J, et al., Towards consensus in networked non-holonomic systems, IET Control Theory & Applications, 2010, 4(10): 2212–2218.

    Article  MathSciNet  Google Scholar 

  13. Cao K C, Jiang B, and Chen Y Q, Cooperative control design for non-holonomic chained-form systems, International Journal of Systems Science, 2015, 46(9): 1525–1539.

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen C Y, Xing Y F, Djapic V, et al., Distributed formation tracking control of multiple mobile robotic systems, IEEE Conference on Decision and Control, Los Angeles, USA, 2014.

    Google Scholar 

  15. Ou M Y, Du H B, and Li S H, Finite-time formation control of multiple nonholonomic mobile robots, International Journal of Robust and Nonlinear Control, 2014, 24(1): 140–165.

    Article  MathSciNet  MATH  Google Scholar 

  16. Du H B, Wen G H, Yu X H, et al., Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer, Automatica, 2015, 62(C): 236–242.

    Google Scholar 

  17. Dimarogonas D V and Johansson K H, Event-triggered control for multi-agent systems, Joint the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, Shanghai, China, 2009.

    Google Scholar 

  18. Liu Z X and Chen Z Q, Event-triggered average-consensus for multi-agent systems, Proceedings of the 29th Chinese Control Conference, Beijing, China, 2010.

    Google Scholar 

  19. Liu Z X, Chen Z Q, and Yuan Z Z, Event-triggered average consensus of multi-agent systems with weighted and direct topology, Journal System Sciences & Complexity, 2012, 25(5): 845–855.

    Article  MathSciNet  MATH  Google Scholar 

  20. Dimarogonas D V, Frazzoli E, and Johansson K H, Distributed event-triggered control for multiagent systems, IEEE Transactions on Automatic Control, 2012, 57(5): 1291–1297.

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang H P, Yue D, Yin X X, et al., Finite-time distributed event-triggered consensus control for multi-agent systems, Information Sciences An International Journal, 2016, 339(C): 132–142.

    Google Scholar 

  22. Yan H C, Shen Y C, Zhang H, et al., Decentralized event-triggered consensus control for secondorder multi-agent systems, Neurocomputing, 2014, 133(1): 18–24.

    Article  Google Scholar 

  23. Xie D S, Xu S Y, Li Z, et al., Event-triggered consensus control for second-order multi-agent systems, IET Control Theory & Applications, 2015, 9(5): 667–680.

    Article  MathSciNet  Google Scholar 

  24. Yi X L, Lu W L, and Chen T P, Distributed event-triggered consensus for multi-agent systems with directed topologies, Chinese Control and Decision Conference. Yinchuan, China, 2016.

    Google Scholar 

  25. Fan Y, Feng G, Wang Y, et al., Distributed event-triggered control of multi-agent systems with combinational measurements, Automatica, 2013, 49(2): 671–675.

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang H W, Huang T M, Wu S, et al., Leader-following consensus of second-order multi-agent systems via event-triggeredcontrol, Control and Decision, 2016, 31(5): 835–841.

    MathSciNet  MATH  Google Scholar 

  27. Hu W F, Liu L, and Feng G, Consensus of linear multi-agent systems by distributed eventtriggered strategy, IEEE Transactions on Cybernetics, 2016, 46(1): 148–157.

    Article  Google Scholar 

  28. Zhao M, Peng C, He W L, et al., Event-triggered communication for leader-following consensus of second-order multi-agent systems, IEEE Transactions on Cybernetics, 2017, (99): 1–10, DOI: 10.1109/TCYB.2017.2716970.

    Article  Google Scholar 

  29. Liu X, Zhong S M, and Ding X Y, Robust exponential stability of nonlinear impulsive switched systems with time-varying delays, Nonlinear Analysis Modelling & Control, 2012, 17(2): 210–222.

    MathSciNet  MATH  Google Scholar 

  30. Murray R M and Sastry S S, Nonholonomic motion planning: Steering using sinusoids, IEEE Transactions on Automatic Control, 1993, 38(5): 700–716.

    Article  MathSciNet  MATH  Google Scholar 

  31. Bloch A M, Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2004.

    Google Scholar 

  32. Khalil H K, Nonlinear Systems, Prentice Hall, New Jersey, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxin Liu.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61573200 and 61573199.

This paper was recommended for publication by Editor FENG Gang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, Z. & Chen, Z. Event-Triggered Consensus for Multiple Nonholonomic Systems. J Syst Sci Complex 31, 1227–1243 (2018). https://doi.org/10.1007/s11424-018-6155-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-018-6155-7

Keywords