Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New Results on the Equivalence of Bivariate Polynomial Matrices

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper investigates the equivalence problem of bivariate polynomial matrices. A necessary and sufficient condition for the equivalence of a square matrix with the determinant being some power of a univariate irreducible polynomial and its Smith form is proposed. Meanwhile, the authors present an algorithm that reduces this class of bivariate polynomial matrices to their Smith forms, and an example is given to illustrate the effectiveness of the algorithm. In addition, the authors generalize the main result to the non-square case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bose N K, Applied Multidimensional Systems Theory, Van Nostrand Reinhold, New York, 1982.

    MATH  Google Scholar 

  2. Bose N K, Buchberger B, and Guiver J, Multidimensional Systems Theory and Applications, Dordrecht, Kluwer, The Netherlands, 2003.

    Google Scholar 

  3. Kailath T, Linear Systems, Englewood Cliffs, NJ: Prentice Hall, 1980.

    MATH  Google Scholar 

  4. Rosenbrock H H, State Space and Multivariable Theory, Nelson-Wiley, New Work, London, 1970.

    MATH  Google Scholar 

  5. Morf M, Levy B, and Kung S, New results in 2-D systems theory: Part I, Proceeding of the IEEE, 1977, 65: 861–872.

    Article  Google Scholar 

  6. Frost M and Storey C, Equivalence of a matrix over R[s, z] with its Smith form, International Journal of Control, 1978, 28(5): 665–671.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lee E and Zak S, Smith forms over R[z1, z2], IEEE Transactions on Automatic Control, 1983, 28(1): 115–118.

    Article  MathSciNet  Google Scholar 

  8. Frost M and Boudellioua M, Some further results concerning matrices with elements in a polynomial ring, International Journal of Control, 1986, 43(5): 1543–1555.

    Article  MathSciNet  MATH  Google Scholar 

  9. Pugh A C, McInerney S J, and El-Nabrawy E M O, Equivalence and reduction of 2-D systems, IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 52(5): 271–275.

    Article  Google Scholar 

  10. Cluzeau T and Quadrat A, Factoring and decomposing a class of linear functional systems, Linear Algebra and Its Applications, 2008, 428: 324–381.

    Article  MathSciNet  MATH  Google Scholar 

  11. Boudellioua M S and Quadrat A, Serre’s reduction of linear function systems, Mathematics in Computer Science, 2010, 4(2–3): 289–312.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cluzeau T and Quadrat A, A new insight into Serre’s reduction problem, Linear Algebra and its Applications, 2015, 483: 40–100.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin Z, Boudellioua M S, and Xu L, On the equivalence and factorization of multivariate polynomial matrices, Proceeding of ISCAS, Greece, 2006, 4911–4914.

    Google Scholar 

  14. Li D, Liu J, and Zheng L, On the equivalence of multivariate polynomial matrices, Multidimensional Systems and Signal Processing, 2017, 28(1): 225–235.

    Article  MathSciNet  MATH  Google Scholar 

  15. Li D and Liang R, Serre’s reduction and the Smith forms of multivariate polynomial matrices, Mathematical Problems in Engineering, 2020, 1–13, DOI: https://doi.org/10.1155/2020/5430842.

    Google Scholar 

  16. Li D, Liu J, and Chu D, The Smith form of a multivariate polynomial matrix over an arbitrary coefficient field, Linear and Multilinear Algebra, 2022, 70(2): 366–379.

    Article  MathSciNet  MATH  Google Scholar 

  17. Li D, Liu J, and Zheng L, On serre reduction of multidimensional systems, Mathematical Problems in Engineering, 2020, 1–8, DOI: https://doi.org/10.1155/2020/7435237.

    Google Scholar 

  18. Lu D, Wang D, and Xiao F, Further results on the factorization and equivalence for multivariate polynomial matrices, Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, 2020, 328–335.

    Chapter  Google Scholar 

  19. Li D, Liang R, and Liu J, Some further results on the Smith form of bivariate polynomial matrices, Journal of System Science and Mathematical Science (Chinese Series), 2019, 39(12): 1983–1997.

    MATH  Google Scholar 

  20. Strang G, Linear Algebra and Its Applications, Academic Press, Cambridge, Massachusetts, 2010.

    MATH  Google Scholar 

  21. Youla D and Gnavi G, Notes on n-dimensional system theory, IEEE Transactions on Circuits and Systems, 1979, 26(2): 105–111.

    Article  MathSciNet  MATH  Google Scholar 

  22. Quillen D, Projective modules over polynomial rings, Inventiones Mathematicae, 1976, 36(1): 167–171.

    Article  MathSciNet  MATH  Google Scholar 

  23. Suslin A A, Projective modules over polynomial rings are free, Soviet Mathematics Doklady, 1976, 17: 1160–1164.

    MATH  Google Scholar 

  24. Serre J P, Faisceaux algébriques cohérents, Annals of Mathematics, 1955, 61(2): 197–278.

    Article  MathSciNet  MATH  Google Scholar 

  25. Logar A and Sturmfels B, Algorithms for the Quillen-Suslin theorem, Journal of Algebra, 1992, 145(1): 231–239.

    Article  MathSciNet  MATH  Google Scholar 

  26. Park H, A computational theory of laurent polynomial rings and multidimensional FIR systems, Doctoral Dissertation, University of California at Berkeley, USA, 1995.

    Google Scholar 

  27. Youla D and Pickel P, The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices, IEEE Transactions on Circuits and Systems, 1984, 31(6): 513–518.

    Article  MathSciNet  MATH  Google Scholar 

  28. Fabiańska A and Quadrat A, Applications of the Quillen-Suslin theorem to multidimensional systems theory, Eds. by Park H, Regensburger G, Gröbner Bases in Control Theory and Signal Processing, Radon Series on Computational and Applied Mathematics, Walter de Gruyter, 2007, 3: 23–106.

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin Z, On matrix fraction descriptions of multivariable linear n-D systems, IEEE Transactions on Circuits and Systems, 1988, 35(10): 1317–1322.

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin Z and Bose N, A generalization of serre’s conjecture and some related issues, Linear Algebra and Its Applications, 2001, 338: 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  31. Pommaret J F, Solving bose conjecture on linear multidimensional systems, Proceedings of European Control Conference, IEEE, Porto, Portugal, 2001, 1653–1655.

    Google Scholar 

  32. Wang M and Feng D, On Lin-Bose problem, Linear Algebra and Its Applications, 2004, 390(1): 279–285.

    Article  MathSciNet  MATH  Google Scholar 

  33. Pugh A C, McInerney S J, and El-Nabrawy E M O, Zero structures of n-D systems, International Journal of Control, 2005, 78(4): 277–285.

    Article  MathSciNet  MATH  Google Scholar 

  34. Li L, Li X, and Lin Z, Stability and stabilisation of linear multidimensional discrete systems in the frequency domain, International Journal of Control, 2013, 86(11): 1969–1989.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Lu.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 12171469, 12001030 and 12201210, the National Key Research and Development Program under Grant No. 2020YFA0712300, and the Fundamental Research Funds for the Central Universities under Grant No. 2682022CX048.

This paper was recommended for publication by Editor MOU Chenqi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Lu, D., Wang, D. et al. New Results on the Equivalence of Bivariate Polynomial Matrices. J Syst Sci Complex 36, 77–95 (2023). https://doi.org/10.1007/s11424-023-1304-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-1304-z

Keywords