Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

APOD mission status and preliminary results

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

On September 20th, 2015, twenty satellites were successfully deployed into a near-polar circular orbit at 520 km altitude by the Chinese CZ-6 test rocket, which was launched from the TaiYuan Satellite Launch Center. Among these satellites, a set of 4 CubeSats conform the atmospheric density detection and precise orbit determination (APOD) mission, which is projected for atmospheric density estimation from in-situ detection and precise orbit products. The APOD satellites are manufactured by China Spacesat Co. Ltd. and the payload instruments include an atmospheric density detector (ADD), a dual-frequency dual-mode global navigation satellite system (GNSS) receiver (GPS and Beidou), a satellite laser ranging (SLR) reflector, and an S/X-band very long baseline interferometry (VLBI) beacon. In this paper, we compare the GNSS precise orbit products with co-located SLR observations, and the 3D orbit accuracy shows better than 10 cm RMS. These results reveal the great potential of the onboard micro-electro-mechanical system (MEMS) GNSS receiver. After calibrating ADD density estimates with precise orbit products, the accuracy of our density products can reach about 10% with respect to the background density. Density estimates from APOD are of a great importance for scientific studies on upper atmosphere variations and useful for model data assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Métivier L. 2011. ITRF2008: An improved solution of the international terrestrial reference frame. J Geod, 85: 457–473

    Article  Google Scholar 

  • Bowman B R, Tobiska K, Marcos F, Huang C, Lin C, Burke W. 2008. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. Hinolulu: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences

  • Bruinsma S. 2015. The DTM-2013 thermosphere model. J Space Weather Space Clim, 5: A1

    Article  Google Scholar 

  • Bruinsma S L, Doornbos E, Bowman B R. 2014. Validation of GOCE densities and thermosphere model evaluation. Adv Space Res, 54: 576–585

    Article  Google Scholar 

  • Bruinsma S, Tamagnan D, Biancale R. 2004. Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet Space Sci, 52: 297–312

    Article  Google Scholar 

  • Calabia A, Jin S. 2016. New modes and mechanisms of thermospheric mass density variations from GRACE accelerometers. J Geophys Res-Space Phys, 121: 11191–11212

    Article  Google Scholar 

  • Calabia A, Jin S G. 2017. Thermospheric density estimation and responses to the March 2013 geomagnetic storm from GRACE GPS-determined precise orbits. J Atmos Sol-Terr Phys, 154: 167–179

    Article  Google Scholar 

  • Chen G M, Xu J, Wang W, Burns A G. 2014. A comparison of the effects of CIR- and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: Statistical studies. J Geophys Res-Space Phys, 119: 7928–7939

    Article  Google Scholar 

  • Clemmons J H, Friesen L M, Katz N, Ben-Ami M, Dotan Y, Bishop R L. 2009. The ionization gauge investigation for the streak mission. Space Sci Rev, 145: 263–283

    Article  Google Scholar 

  • Doornbos E, van den IJssel J, Luehr H, Foerster M, Koppenwallner G, Bruinsma S, Sutton E, Forbes J M, Marcos F, Perosanz F. 2010. Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J Spacecraft Rockets, 47: 580–589

    Article  Google Scholar 

  • Emmert J T. 2015. Thermospheric mass density: A review. Adv Space Res, 56: 773–824

    Article  Google Scholar 

  • Gu D, Liu Y, Yi B, Cao J, Li X. 2017. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite. Adv Space Res, 60: 2723–2732

    Article  Google Scholar 

  • Gurtner W, Noomen R, Pearlman M R. 2005. The international laser ranging service: Current status and future developments. Adv Space Res, 36: 327–332

    Article  Google Scholar 

  • Hedin A E, Biondi M A, Burnside R G, Hernandez G, Johnson R M, Killeen T L, Mazaudier C, Meriwether J W, Salah J E, Sica R J, Smith R W, Spencer N W, Wickwar V B, Virdi T S. 1991. Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res, 96: 7657–7688

    Article  Google Scholar 

  • Huang C, Huang Y, Su Y, Sutton E K, Hairston M R, Coley W R. 2016. Ionosphere-thermosphere (IT) response to solar wind forcing during magnetic storms. J Space Weather Space Clim, 6: A4

    Article  Google Scholar 

  • Li X, Xu J Y, Tang G S, Chen G M, Man H Y, Liu S S, Li Y P. 2018. Processing and calibrating of in-situ atmospheric densities for APOD (in Chinese). Chin J Geophys, 61: 3567–3576

    Google Scholar 

  • Liu H, Lühr H. 2005. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J Geophys Res, 110: A09S29

    Google Scholar 

  • Liu R, Lühr H, Ma S Y. 2010. Storm-time related mass density anomalies in the polar cap as observed by CHAMP. Ann Geophys, 28: 165–180

    Article  Google Scholar 

  • Pearlman M R, Degnan J J, Bosworth J M. 2002. The international laser ranging service. Adv Space Res, 30: 135–143

    Article  Google Scholar 

  • Picone J M, Emmert J T, Lean J L. 2005. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets. J Geophys Res, 110: A03301

    Article  Google Scholar 

  • Picone J M, Hedin A E, Drob D P, Aikin A C. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res, 107: SIA 15–1–SIA 15–16

    Article  Google Scholar 

  • Qian L, Solomon S C. 2012. Thermospheric density: An overview of temporal and spatial variations. Space Sci Rev, 168: 147–173

    Article  Google Scholar 

  • Qin G, Xu G, Ma Z. 1990. Satellite-borne ionization gauge measures upper atmospheric densities. Res Space Phys, 5: 143–149

    Google Scholar 

  • Sang J, Smith C, Zhang K. 2012. Towards accurate atmospheric mass density determination Using precise positional information of space objects. Adv Space Res, 49: 1088–1096

    Article  Google Scholar 

  • Storz M F, Bowman B R, Branson M J I, Casali S J, Tobiska W K. 2005. High accuracy satellite drag model (HASDM). Adv Space Res, 36: 2497–2505

    Article  Google Scholar 

  • Sutton E K, Forbes J M, Nerem R S. 2005. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res, 110: A09S40

    Article  Google Scholar 

  • Willis P, Deleflie F, Barlier F, Bar-Sever Y E, Romans L J. 2005. Effects of thermosphere total density perturbations on LEO orbits during severe geomagnetic conditions (Oct–Nov 2003) using DORIS and SLR data. Adv Space Res, 36: 522–533

    Article  Google Scholar 

  • Xu J, Wang W, Lei J, Sutton E K, Chen G. 2011. The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits. J Geophys Res, 116: A02315

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the ILRS for SLR data of the APOD mission. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41874183, 41474131 & 41604131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geshi Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Li, X., Cao, J. et al. APOD mission status and preliminary results. Sci. China Earth Sci. 63, 257–266 (2020). https://doi.org/10.1007/s11430-018-9362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9362-6

Keywords