Abstract
In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large number of new results in recent years. We classify and discuss the existing methods within three categories: Lagrangian method, Eulerian method and Lattice-Boltzmann method. We then introduce techniques for seven different kinds of special fluid effects. Finally we review the latest hot research areas and point out some future research trends, including surface tracking, fluid control, hybrid method, model reduction, etc.
Similar content being viewed by others
References
Liu Y Q, Liu X H, Zhu H B,et al. Physically based fluid simulation in computer animation. J Comput-Aid Des Comput Graph, 2005, 17(12): 2581–2549
Osher S, Fedkiw R. Level-set Methods and Dynamic Implicit Surfaces. New York: Springer-Verlag New York Inc., 2003
Pharr M, Humphreys G. Physically Based Rendering: From Theory to Implementation. San Francisco: Morgan Kaufmann Publishers Inc., 2004
Bridson R, Muller-Fischer M. Fluid simulation: Siggraph 2007 course notes. In: ACM SIGGRAPH 2007 Courses. New York: ACM, 2007. 1–81
Reeves W T. Particle systems-A technique for modeling a class of fuzzy objects. Comput Graph, 1983, 17(3): 359–376
Monaghan J J. Smoothed particle hydrodynamics. Ann Rev Astronomy Astrophys, 1992, 30: 543–574
Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Aire-la-Ville: Eurographics Association, 2003. 154–159
Müller M, Keiser R, Nealen A, et al. Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. Aire-la-Ville: Eurographics Association, 2004. 141–151
Premoze S, Tasdizen T, Bigler J, et al. Particle-based simulation of fluids. Comput Graph Forum, 2003, 22(3): 401–410
Stam J, Fiume E. Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1995. 129–136
Takeshita D, Ota S, Tamura M, et al. Particle-based visual simulation of explosive flames. In: 11th Pacific Conference on Computer Graph Applications. 2003. 482–486
Keiser R, Adams B, Gasser D, et al. A unified Lagrangian approach to solid-fluid animation. In: Eurographics Symposium on Point-Based Graphics. 2005. 125–133
Cummins S, Rudman M. An SPH projection method. J Comput Phys, 1999, 152(2): 584–607
Becker M, Teschner M. Weakly compressible SPH for free surface flows. In: Gleicher M, Thalmann D, eds. Symposium on Computer Animation, Eurographics Association, 2007. 209–217
Anderson J D, Jr. Computational Fluid Dynamics: The Basics with Applications. New York: McGraw-Hill Inc., 1995
Harlow F H, Welch J E. Numerical calculation of timedependent viscous incompressible flow of fluid with free surface. Phys Fluids, 1965, 8(12): 2182–2189
Stam J. Real-time fluid dynamics for games. In: Proceedings of the Game Developer Conference, 2003
Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics. Comput Graph, 1990, 24(4): 49–57
Bridson R. Shallow water discretization, Lecture Notes Animation Physics, 2005
Foster N, Metaxas D. Realistic animation of liquids. Graph Model Image Proc, 1996, 58(5): 471–483
Stam J. Stable fluids. In: Proceedings of the 26th Annual Conference on Computer graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 1999. 121–128
Foster N, Fedkiw R. Practical animation of liquids. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001. 23–30
Enright D, Marschner S, Fedkiw R. Animation and rendering of complex water surfaces. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2002. 736–744
Li W, Wei X M, Kaufman A. Implementing lattice boltzmann computation on graphics hardware. Visual Comput, 2003, 19: 444–456
Chen S Y, Doolen G D. Lattice boltzmann method for fluid flows. Ann Rev Fluid Mech, 1998, 30(1): 329–364
Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. Phys Rev, 1954, 94: 511–525
Wei X M, Zhao Y, Fan Z, et al. Natural phenomena: blowing in the wind. In: Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003. 75–85
Losasso F, Shinar T, Selle A, et al. Multiple interacting liquids. ACM Trans Graph, 2006, 25(3): 812–819
Kim J, Cha D, Chang B, et al. Practical animation of turbulent splashing water. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2006. 335–344
Thuerey N, Sadlo F, Schirm S, et al. Real-time simulations of bubbles and foam within a shallow water framework. In: Proc. of the 2007 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2007. 191–198
Hong J M, Lee H Y, Yoon J C, et al. Bubble alive. In: ACM SIGGRAPH Conference Proceedings, 2008
Takahashi T, Fujii H, Kunimatsu A, et al. Realistic animation of fluid with splash and foam. Comput Graph Forum, 2003, 22(3): 391–400
Desbrun M, Cani M P. Smoothed particles: A new paradigm for animating highly deformable bodies. In: Computer Animation and Simulation 96 (Proceedings of EG Workshop on Animation and Simulation). Berlin: Springer-Verlag, 1996. 67–76
Chentanez N, Feldman B E, Labelle F, et al. Liquid simulation on lattice-based tetrahedral meshes. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurgraphics Association, 2007. 219–228
Klingner B M, Feldman B E, Chentanez N, et al. Fluid animation with dynamic meshes. ACM Trans Graph, 2006, 25(3): 820–825
Batty C, Bertails F, Bridson R. A fast variational framework for accurate solid-fluid coupling. In: ACM SIGGRAPH 2007 Papers. New York: ACM, 2007. 100
Losasso F, Gibou F, Fedkiw R. Simulating water and smoke with an octree data structure. In: ACM SIGGRAPH 2004 Papers. New York: ACM, 2004. 457–462
Irving G, Guendelman E, Losasso F, et al. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans Graph, 2006, 25(3): 805–811
Lenaerts T, Adams B, Dutré P. Porous flow in particle-based fluid simulations. In: Turk G, ed. ACM Transactions on Graphics. New York: ACM, 2008. Article No. 49
Wang H, Mucha P J, Turk G. Water drops on surfaces. In: ACM SIGGRAPH 2005 Papers. New York: ACM, 2005. 921–929
Thürey N, Rüde U. Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. Computing and Visualization in Science. Berlin: Springer, 2008
Harris M J, Baxter WV III, Scheuermann T, et al. Simulation of cloud dynamics on graphics hardware. In: Proceedings of Graphics Hardware, San Diego, 2003. 92–101
Harris M J. Real-time cloud simulation and rendering. PhD thesis of The University of North Carolina at Chapel Hill, 2003
Dobashi Y, Kaneda K, Okita T, et al. Efficient method for realistic animation of clouds. In: Conference Proceedings, Annual Conference Series, 2000. 19–28
Miyazaki R, Dobashi Y, Nishita T. Simulation of cumuliform clouds based on computational fluid dynamics. In: Proc. EUROGRAPHICS 2002 Short Presentation, 2002. 405–410
Fedkiw R, Stam J, Jensen H W. Visual simulation of smoke. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001. 15–22
Foster N, Metaxas D. Modeling the motion of a hot, turbulent gas. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 1997. 181–188
Steinhoff J, Underhill D. Modification of the euler equations for vorticity confinement: Application to the computation of interacting vortex rings. Phys Fluids, 1994, 6(8): 2738–2744
Nguyen D Q, Fedkiw R, Jensen H W. Physically based modeling and animation of fire. ACM Trans Graph, 2002, 21(3): 721–728
Lamorlette A, Foster N. Structural modeling of flames for a production environment. ACM Trans Graph, 2002, 21(3): 729–735
Neff M, Fiume E. A visual model for blast waves and fracture. In: Proceedings of Graphics Interface 1999, 1999. 193–202
Yngve G D, Obrien J F, Hodgins J K. Animating explosions. In: Proceedings of SIGGRAPH 2000, ACM Press / ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, ACM, 2000. 29–36
Obrien J F, Hodgins J K. Graphical modeling and animation of brittle fracture. In: Proceedings of SIGGRAPH 1999, Computer Graphics Proceedings, Annual Conference Series, ACM, 1999. 137–146
Rasmussen N, Nguyen D Q, Geiger W, et al. Smoke simulation for large scale phenomena. ACM Trans Graph, 2003, 22(3): 703–707
Desbrun M, Cani M-P. Animating soft substances with implicit surfaces. In: Computer Graphics Proceedings, ACM SIGGRAPH, 1995. 287–290
Carlson M, Mucha P J, Van Horn R, et al. Melting and flowing. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. New York: ACM, 2002. 167–174
Clavet S, Beaudoin P, Poulin P. Particle based viscoelastic fluid simulation. In: Proc. Symposium on Computer Animation, 2005. 219–228
Goktekin T G, Bargteil A W, Obrien J F. A method for animating viscoelastic fluids. In: ACM SIGGRAPH 2004 Papers. New York: ACM, 2004. 463–468
Bargteil A W, Wojtan C, Hodgins J K, et al. A finite element method for animating large viscoplastic flow. ACM Trans Graph, 2007, 26(3): 16:1–16:8
Wojtan C, Turk G. Fast viscoelastic behavior with thin features. In: Turk G, ed. ACM Transactions on Graphics. New York: ACM, 2008. Article No. 47
Miller G, Pearce A. Globular dynamics: a connected particle system for animating viscous fluids. Comput Graph, 1989, 13: 305–309
Luciani A, Habibi A, Manzotti E. A multiscale physical model of granular materials. In: Graphics Interface, 1995. 136–146
Zhu Y, Bridson R. Animating sand as a fluid. ACM Trans Graph, 2005, 24(3): 965–972
Harlow F H. The particle-in-cell method for numerical solution of problems in fluid dynamics. In: Experimental Arithmetic, High-speed Computations and Mathematics, 1963
Brackbill J U, Ruppel H M. FLIP: a method for adaptively zoned, particle-in-cell calculuations of fluid flows in two dimensions. J Comp Phys, 1986, 65: 314–343
Hong J-M, Kim C-H. Discontinuous fluids. ACM Trans Graph, 2005, 24(3): 915–920
Fedkiw R, Aslam T, Merriman B, et al. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys, 1999, 152: 457–492
Hong J-M, Kim C-H. Animation of bubbles in liquid. Comput Graph Forum, 2003, 22(3): 253–262
Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39: 201–255
Tryggvason G, Bunner B, Esmaeeli A, et al. A front tracking method for the Computations of multiphase flow. J Comput Phys, 2001, 169: 708–759
Greenwood S T, House D H. Better with bubbles: enhancing the visual realism of simulated fluid. In: Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2004. 287–296
Müller M, Solenthaler B, Keiser R, et al. Particle-based fluidfluid interaction. In: Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2005. 237–244
Kim T, Carlson M. A simple boiling module. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. Aire-la-Ville: Eurographics Association, 2007. 27–34
Thürey N, Rüde U. Free surface lattice-boltzmann fluid simulations with and without level sets. In: Workshop on Vision, Modeling, and Visualization, 2004
Pohl T, Deserno F, Thürey N, et al. Performance evaluation of parallel large-scale lattice boltzmann applications on three supercomputing architectures. In: Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference. 2004
Kim B, Liu Y, Llamas I, et al. Simulation of bubbles in foam with the volume control method. ACM Trans Graph, 2007, 26(3): 98
Takahashi T, Heihachi U, Kunimatsu A. The simulation of fluid-rigid body interaction. In: Proc. SIGGRAPH Sketches & Applications, 2002
Géenevaux O, Habibi A, Dischler J-M. Simulating fluid-solid interaction. In: Graphics Interface, 2003. 31–38
Carlson M, Mucha P J, Turk G. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph, 2004. 23: 377–384
Guendelman E, Selle A, Losasso F, et al. Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph, 2005, 24(3): 973–981
Peskin C S. The immersed boundary method. Acta Numer, 2002, 11: 479–517
Chentanez N, Goktekin T G, Feldman B E, et al. Simultaneous coupling of fluids and deformable bodies. In: ACM-EG Proc. Symposium on Computer Animation, 2006. 83–89
Blinn J F. A generalization of algebraic surface drawing. ACM Trans Graph, 1982, 1(3): 235–256
Adams B, Pauly M, Keiser R, et al. Adaptively sampled particle fluids. In: ACM SIGGRAPH 2007 Papers. New York: ACM, 2007. 48
Müller M, Schirm S, Duthaler S. Screen space meshes. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2007. 9–15
Unverdi S, Tryggvason G. A front tracking method for viscous, incompressible, multifluid flows. J Comput Phys, 1992, 100: 25
Torres D J, Brackbill J U. The point-set method: fronttracking without connectivity. J Comput Phys, 2000, 165: 620–644
Lorensen W E, Cline H E. Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput Graph, 1987, 21(4): 163–169
Shin S, Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J Comput Phys, 2002, 180: 427–470
Kunimatsu A, Watanabe Y, Fujii H, et al. Fast simulation and rendering techniques for fluid objects. Comput Graph Forum, 2001, 20(3): 357–367
Mihalef V, Metaxas D, Sussman M. Textured liquids based on the marker level set. Eurographics 2007, 2007, 26: 3
Bargteil A W, Goktekin T G, Obrien J F, et al. A semi-Lagrangian contouring method for fluid simulation. ACM Trans Graph, 2006, 25(1): 19–38
Foster N, Metaxas D. Controlling fluid animation. In: Proc. of CGI, 1997
Feldman B E, Obrien J F, Arikan O. Animating suspended particle explosions. In: Proceedings of ACM SIGGRAPH 2003, 2003. 708–715
Rasmussen N, Enright D, Nguyen D, et al. Directable photorealistic liquids. In: Proc. of Symposium on Computer Animation, 2004
Treuille A, Mcnamara A, Popovic Z, et al. Keyframe control of smoke simulations. ACM Trans Graph, 2003, 22(3): 716–723
Mcnamara A, Treuille A, Popovic Z, et al. Fluid control using the adjoint method. ACM Trans Graph, 2004, 23(3): 449–456
Fattal R, Lischinski D. Target-driven smoke animation. ACM Trans Graph, 2004, 23(3): 441–448
Pighin F, Cohen J M, Shah M. Modeling and editing flows using advected radial basis functions. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM Press, 2004. 223–232
Hong J-M, Kim C-H. Controlling fluid animation with geometric potential: Research articles. Comput Animat Virtual Worlds, 2004, 15(3-4): 147–157
Shi L, Yu Y. Controllable smoke animation with guiding objects. ACM Trans Graph, 2005, 24(1): 140–164
Shi L, Yu Y. Taming liquids for rapidly changing targets. In: Proc. of Symposium on Computer Animation, 2005
Thürey N, Keiser R, Pauly M, et al. Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2006. 7–12
Feldman B E, Obrien J F, Klingner B M. Animating gases with hybrid meshes. In: ACM SIGGRAPH 2005 Papers. New York: ACM, 2005. 904–909
Tan J, Yang X B, Zhao X, et al. Fluid animation with multilayer grids. In: Proc. Symposium on Computer Animation, 2008
Thürey N, Rüde U, Stamminger M. Animation of open water phenomena with coupled shallow water and free surface simulations. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2006. 157–164
Kang B, Jang Y, Ihm I. Animation of chemically reactive fluids using a hybrid simulation method. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2007. 199–208
Selle A, Rasmussen N, Fedkiw R. A vortex particle method for smoke, water and explosions. ACM Trans Graph, 2005. 24(3): 910–914
Losasso F, Talton J, Kwatra N, et al. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans Vis Comput Graph, 2008, 14(4): 797–804
Treuille A, Lewis A, Popovic Z. Model reduction for real-time fluids. ACM Trans Graph, 2006, 25(3): 826–834
Gupta M, Narasimhan S G. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2007
Boltz J, Farmer I, Grinspun E, et al. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans Graph, 2003, 22(3): 917–924
Wu E H, Liu Y Q, Liu X H. An improved study of real-time fluid simulation on GPU. J Comput Anim Virt World, 2004, 15(3-4): 139–146
Liu Y Q, Liu X H, Wu E H. Real-time 3D fluid simulation on GPU with complex obstacles. In: Proceedings of Pacific Graphics 2004, Seoul, 2004. 247–256
Tölke J. Implementation of a lattice boltzmann kernel using the compute unified device architecture developed by nVIDIA. Computing and Viualization in Science. Berling: Springer, 2008
Crane K, Llamas I, Tariq S. Real-time simulation and rendering of 3D fluids. GPU Gem 3, Chaper 30, Nvidia 2007
Lin N. Special effect with Geforce 8 series hardware. In: Game Developer Conference, Shanghai, 2007
Geiss R. Generating complex procedural terrains using the gpu. GPU Gem 3, Chaper 1, Nvidia 2007
Kim T, Thürey N, James D, et al. Wavelet turbulence for fluid simulation. ACM Trans Graph, 2008, 27(13): 1–6
Schechter H. Bridson R. Evolving sub-grid turbulence for smoke animation. In: Symposium on Computer Animation, 2008
Kim B, Liu Y, Llamas I, et al. FlowFixer: Using BFECC for fluid simulation. In: Eurographics Workshop on Natural Phenomena. 2005
Molemaker J, Cohen M J, Patel S, et al. Low viscosity flow simulations for animation. In: Symposium on Computer Animation, 2008
Song O-Y, Shin H, Ko H-S. Stable but nondissipative water. ACM Trans Graph, 2005, 24(1): 81–97
Thompson, Joe F, Warsi Z V A, et al. Numerical Grid Generation: Foundations and Applications. New York: North-Holland, 1985
Zhao Q P. A servey on virtual reality. Sci China Ser F-Inf Sci, 2009, 52(3): 348–400
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported partially by the National Basic Research Program of China (Grant No. 2009CB320804), and the National High-Tech Research & Development Program of China (Grant No. 2006AA01Z307)
Rights and permissions
About this article
Cite this article
Tan, J., Yang, X. Physically-based fluid animation: A survey. Sci. China Ser. F-Inf. Sci. 52, 723–740 (2009). https://doi.org/10.1007/s11432-009-0091-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-009-0091-z