Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite-time disturbance attenuation of nonlinear systems

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

This paper is devoted to the finite-time disturbance attenuation problem of affine nonlinear systems. Based on the finite time Lyapunov stability theory, some finite-time H performance criterions are derived. Then the state-feedback control law is designed and the structure of such a controller is investigated. Furthermore, it is shown that the H controller can also make the closed-loop system satisfy finite-time H performance for nonlinear homogeneous systems. An example is provided to demonstrate the effectiveness of the presented results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basar T, Bernhard P. H -Optimal Control and Related Minimax Design Problems — A Dynamic Game Approach. Boston: Birkhäuser, 1999

    Google Scholar 

  2. Bhat S, Bernstein D. Continuous finite-time stabilization of the translational and rotation double integrators. IEEE Trans Automat Contr, 1998, 43(5): 678–682

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhat S, Bernstein D. Finite-time stability of continuous autonomous system. SIAM J Control Optim, 2000, 38(3): 751–766

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhat S, Bernstein D. Finite-time stability of homogeneous systems. In: Preeding of ACC Albuquerque. New Mexico, 1997, 2513–2514

  5. Haimo V. Finite time controllers. SIAM J Control Optim, 1986, 24: 760–770

    Article  MATH  MathSciNet  Google Scholar 

  6. Hong Y. Finite-time stabilization and stabilizability of a class of controllable systems. Syst Control Lett, 2002, 46(3): 231–236

    Article  MATH  Google Scholar 

  7. Hong Y. H control, stabilization, and input-output stability of nonlinear systems with homogeneous properties. Automatica, 2001, 37: 819–829

    Article  MATH  Google Scholar 

  8. Huang X, Lin W, Yang B. Global finite-time stabilization of a class of uncertain nonlinear system, Automatica, 2005, 41: 881–888

    Article  MATH  MathSciNet  Google Scholar 

  9. Jiang Z, Praly L. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica, 1998, 34: 835–840

    MathSciNet  Google Scholar 

  10. Jiang Z, Mareels L. Robust nonlinear integral control. IEEE Trans Automat Contr, 2001, 46: 1336–1342

    Article  MATH  MathSciNet  Google Scholar 

  11. Ji Y, Gao W. Nonlinear H control and estimation of optimal H -gain. Syst Control Lett, 1995, 24: 321–332

    Article  MATH  MathSciNet  Google Scholar 

  12. Lin P, Jia Y, Li L. Distributed robust H consensus control in directed networks of agents with time-delay. Syst Control Lett, 2008, 57: 643–653

    Article  MATH  MathSciNet  Google Scholar 

  13. James M R. Recent development in nonlinear H control. Annu Rev Control, 1997, 21: 43–54

    Article  Google Scholar 

  14. McCaffrey D. Geometric existence theory for the control affine H problem. J Math Anal Appl, 2006, 324: 682–695

    Article  MATH  MathSciNet  Google Scholar 

  15. Mo L, Jia Y, Zheng Z. Finite-time disturbance attenuation of a class of uncertain nonlinear systems. submitted to Asian J Control

  16. Van Der Schaft A J. L 2 gain analysis of nonlinear systems and nonlinear H control. IEEE Trans Automat Contr, 1992, 37: 770–784

    Article  MATH  Google Scholar 

  17. Van Der Schaft A J. On the state space approach to nonlinear H∞ control. Syst Control Lett, 1991, 16: 1–8

    Article  MATH  Google Scholar 

  18. Hong Y, Wang J. Non-smooth finite-time stabilization for a class of nonlinear systems. Sci China Ser F-Inf Sci, 2006, 49(1): 80–89

    Article  MATH  MathSciNet  Google Scholar 

  19. Mo L, Jia Y, Zheng Z. Robust stabilization and passitivity of uncertain nonlinear systems. Dynam Cont Dis Ser B, 2009, 16: 383–396

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiPo Mo.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2005CB321902), the National Natural Science Foundation of China (Grant No. 60374001), and the Doctoral Fund of Ministry of Education of China (Grant No. 20030006003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, L., Jia, Y. & Zheng, Z. Finite-time disturbance attenuation of nonlinear systems. Sci. China Ser. F-Inf. Sci. 52, 2163–2171 (2009). https://doi.org/10.1007/s11432-009-0194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0194-6

Keywords