Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Information entropy for ordinal classification

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Ordinal classification plays an important role in various decision making tasks. However, little attention is paid to this type of learning tasks compared with general classification learning. Shannon information entropy and the derived measure of mutual information play a fundamental role in a number of learning algorithms including feature evaluation, selection and decision tree construction. These measures are not applicable to ordinal classification for they cannot characterize the consistency of monotonicity in ordinal classification. In this paper, we generalize Shannon’s entropy to crisp ordinal classification and fuzzy ordinal classification, and show the information measures of ranking mutual information and fuzzy ranking mutual information. We discuss the properties of these measures and show that the proposed ranking mutual information and fuzzy ranking mutual information are the indexes of consistency of monotonicity in ordinal classification. In addition, the proposed indexes are used to evaluate the monotonicity degree between features and decision in the context of ordinal classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamishima T, Akaho S. Dimension reduction for supervised ordering. In: Proceedings of the Sixth International Conference on Data Mining (ICDM’06). Hong Kong, China, 2006. 18–22

  2. Lee J W T, Yeung D S, Wang X. Monotonic decision tree for ordinal classification. IEEE Int Conf Syst Man Cybern, 2003, 3: 2623–2628

    Google Scholar 

  3. Ben-David A, Sterling L, Pao Y H. Learning and classification of monotonic ordinal concepts. Comput Intell, 1989, 5: 45–49

    Article  Google Scholar 

  4. Ben-David A. Automatic generation of symbolic multiattribute ordinal knowledge-based DSSs: Methodology and applications. Decis Sci, 1992, 23: 1357–1372

    Article  Google Scholar 

  5. Frank E, Hall M. A simple approach to ordinal classification. In: De Raedt L, Flach P, eds. ECML 2001, LNAI 2167. Berlin: Springer-Verlag, 2001. 145–156

    Chapter  Google Scholar 

  6. Costa J P, Cardoso J S. Classification of ordinal data using neural networks. In: Gama J, Camacho R, Brazdil P, et al. eds. ECML 2005, LNAI 3720. Berlin: Springer-Verlag, 2005. 690–697

    Chapter  Google Scholar 

  7. Cardoso J S, Costa J F P. Learning to classify ordinal data: the data replication method. J Mach Learn Res, 2007, 8: 1393–1429

    MathSciNet  Google Scholar 

  8. Costa J P, Alonso H, Cardoso J S. The unimodal model for the classification of ordinal data. Neur Netw, 2008, 21: 78–91

    Google Scholar 

  9. Ben-David A. Monotonicity maintenance in information-theoretic machine learning algorithms. Mach Learn, 1995, 19: 29–43

    Google Scholar 

  10. Potharst R, Bioch J C. Decision trees for ordinal classification. Intell Data Anal, 2000, 4: 97–111

    MATH  Google Scholar 

  11. Cao-Van K, Baets B D. Growing decision trees in an ordinal setting. Int J Intell Syst, 2003, 18: 733–750

    Article  MATH  Google Scholar 

  12. Potharst R, Feelders A J. Classification trees for problems with monotonicity constraints. ACM SIGKDD Explor Newslett, 2002, 4: 1–10

    Article  Google Scholar 

  13. Xia F, Zhang W S, Li F X, et al. Ranking with decision tree. Know Inf Syst, 2008, 17: 381–395

    Article  Google Scholar 

  14. Greco S, Matarazzo B, Slowinski R. Rough approximation of a preference relation by dominance relations. ICS Research Report 16/96. Europ J Operat Res, 1999, 117: 63–83

    Article  MATH  Google Scholar 

  15. Hu Q, Yu D, Guo M Z. Fuzzy preference based rough sets. Inf Sci, 2010, 180: 2003–2022

    Article  Google Scholar 

  16. Lee J W T, Yeung D S, Tsang E C C. Rough sets and ordinal reducts. Soft Comput, 2006, 10: 27–33

    Article  Google Scholar 

  17. Sai Y, Yao Y Y, Zhong N. Data analysis and mining in ordered information tables. In: Proceedings of the IEEE International Conference on Data Mining, IEEE Computer Society, 2001. 497–504

  18. Greco S, Matarazzo B, Slowinski R. Rough sets methodology for sorting problems in presence of multiple attributes and criteria. Europ J Operat Res, 2002, 138: 247–259

    Article  MATH  MathSciNet  Google Scholar 

  19. Liang J Y, Qian Y H. Information granules and entropy theory in information systems. Sci China Ser F-Inf Sci, 2008, 51: 1427–1444

    Article  MATH  MathSciNet  Google Scholar 

  20. Hu D, Li H X, Yu X C. The information content of rules and rule sets and its application. Sci China Ser F-Inf Sci, 2008, 51: 1958–1979

    Article  MathSciNet  Google Scholar 

  21. Mingers J. An empirical comparison of selection measures for decision-tree induction. Mach Learn, 1989, 3: 319–342

    Google Scholar 

  22. Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Patt Anal Mach Intell, 2005, 27: 1226–1238

    Article  Google Scholar 

  23. Fayyad U M, Irani K B. On the handling of continuous-valued attributes in decision tree generation. Mach Learn, 1992, 8: 87–102

    MATH  Google Scholar 

  24. Viola P, Wells W M. III. Alignment by maximization of mutual information. Int J Comput Vision, 1997, 24: 137–154

    Article  Google Scholar 

  25. Spearman C. “Footrule” for measuring correlation. British J Psych, 1906, 2: 89–108

    Google Scholar 

  26. Hu Q H, Yu D R, Xie Z X, et al. Fuzzy probabilistic approximation spaces and their information measures. IEEE Trans Fuzzy Syst, 2006, 14: 191–201

    Article  Google Scholar 

  27. Yu D R, Hu Q H, Wu C. Uncertainty measures for fuzzy relations and their applications. Appl Soft Comput, 2007, 7: 1135–1143

    Article  Google Scholar 

  28. Quinlan J R. Induction of decision trees. Mach Learn 1986, 1: 81–106

    Google Scholar 

  29. Quinlan J R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, 1993

    Google Scholar 

  30. Pawlak Z. Rough Sets, Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishers, 1991

    MATH  Google Scholar 

  31. Greco S, Matarazzo B, Slowinski R. Rough approximation by dominance relations. Int J Intell Syst, 2002, 17: 153–171

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingHua Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Guo, M., Yu, D. et al. Information entropy for ordinal classification. Sci. China Inf. Sci. 53, 1188–1200 (2010). https://doi.org/10.1007/s11432-010-3117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-3117-7

Keywords