Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-channel neural mass modelling and analyzing

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Multi-channel neural signals generated by a computational model can help understand the mechanism of EEG rhythms, analyze brain functional connectivity and evaluate neural signal processing methods. In this study, a two-kinetics lumped-parameter neural mass model is extended to a multi-kinetics and multi-channel coupled model. This new model can effectively simulate the coupled dynamics activities between different areas in the brain. The simulation results show that the proposed model can generate neural signals with various frequency bands, from delta wave (1–4 Hz) to gamma wave (30–70 Hz), and the dynamics of the simulated neural signals is more complicated. The simulation analysis can also reveal the relationship between the coupled neural networks and the rhythm of neural populations, and the simulated neural signals can present the bi-modal and uni-modal phenomenon in the frequency domain when the coupling strength of models increases. Finally, analysis of an epileptic EEG signal from a rat demonstrates that the coupling among the neural populations can induce a large-scale seizure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ursino M, Cona F, Zavaglia M. The generation of rhythms within a cortical region: Analysis of a neural mass model. NeuroImage, 2010, 52: 1080–1094

    Article  Google Scholar 

  2. Lytton W W. Computer modelling of epilepsy. Nature, 2008, 9: 626–637

    Google Scholar 

  3. Van Albada S J, Robinson P A. Mean-field modeling of the basal ganglia-thalamocortical system. I: Firing rates in healthy and parkinsonian states. J Theor Biol, 2009, 257: 642–663

    Article  Google Scholar 

  4. Van Albada S J, Gray R T, Drysdale P M, et al. Mean-field modeling of the basal ganglia-thalamocortical system. II: Dynamics of parkinsonian oscillations. J Theor Biol, 2009, 257: 664–688

    Article  Google Scholar 

  5. Hodgkin A L, Huxley A F. A quantitatived description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    Google Scholar 

  6. Chay T R. Chaos in a three-variable excitable cell model. Physica D, 1985, 16: 233–242

    Article  MATH  Google Scholar 

  7. Traub R D, Contreras D, Cunningham M O, et al. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol, 2005, 93: 2194–2232

    Article  Google Scholar 

  8. Lopes da Silva F H, Hoeks A, Smits H, et al. Model of brain rhythmic activity. Kybernetik, 1974, 15: 27–37

    Article  Google Scholar 

  9. Freeman W J. Models of the dynamics of neural populations. Electroencephalogr Clin Neurophysiol, 1978, 34: 9–18

    MathSciNet  Google Scholar 

  10. Freeman W J. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern, 1987, 56: 139–150

    Article  Google Scholar 

  11. Jansen B H, Rit V G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern, 1995, 73: 357–366

    Article  MATH  Google Scholar 

  12. Wendling F, Bartolomei F, Bellanger J J, et al. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci, 2002, 15: 1499–1508

    Article  Google Scholar 

  13. Wendling F, Bellanger J J, Bartolomei F, et al. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern, 2000, 83: 367–378

    Article  Google Scholar 

  14. Wendling F. Neurocomputational models in the study of epileptic phenomena. J Clin Neurophysiol, 2005, 22: 285–287

    Google Scholar 

  15. Zavaglia M, Astolfi L, Babiloni F, et al. A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks. J Neurosci Meth, 2006, 157: 317–329

    Article  Google Scholar 

  16. Marreiros A C, Kiebel S J, Friston K J. A dynamic causal model study of neuronal population dynamics. NeuroImage, 2010, 51: 91–101

    Article  Google Scholar 

  17. David O, Kiebel S J, Harrison L M, et al. Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage, 2006, 30: 1255–1272

    Article  Google Scholar 

  18. David O, James M K, Friston K J. Mechanisms of evoked and induced responses in MEG/EEG. NeuroImage, 2006, 31: 1580–1591

    Article  Google Scholar 

  19. Kiebel S J, Garrido M I, Moran R J, et al. Dynamic causal modelling for EEG and MEG. Cogn Neurodyn, 2008, 2: 121–136

    Article  Google Scholar 

  20. Spiegler A, Kiebel S J, Atay F M, et al. Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants. NeuroImage, 2010, 52: 1041–1058

    Article  Google Scholar 

  21. David O, Friston K J. A neural mass model for MEG/EEG: Coupling and neuronal dynamics. NeuroImage, 2003, 20: 1743–1755

    Article  Google Scholar 

  22. David O, Cosmelli D, Friston K J. Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage, 2004, 21: 659–673

    Article  Google Scholar 

  23. Babajani A, Soltanian-Zadeh H. Integrated MEG/EEG and fMRI model based on neural masses. IEEE Trans Biomed Eng, 2006, 53: 1794–1801

    Article  Google Scholar 

  24. Babajani A, Soltanian-Zadeh H. Multi-area neural mass modeling of EEG and MEG signals. NeuroImage, 2010, 52: 793–811

    Article  Google Scholar 

  25. Jefferys J R G, Fox J E. Epilepsy. In: Richards D, Clark C, Clarke T, eds. The Human Brain. Oxford: Oxford University Press, 2007

    Google Scholar 

  26. Fox J E, Bikson M, Jefferys J R G. The effect of neuronal population size on the development of epileptiform discharges in the low calcium model of epilepsy. Neurosci Lett, 2007, 411: 158–161

    Article  Google Scholar 

  27. Li X L, Cui D, Jiruska P, et al. Synchronization measurement of multiple neuronal populations. J Neurophysiol, 2007, 98: 3341–3348

    Article  Google Scholar 

  28. Rudrauf D, Douiri A, Kovach C, et al. Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals. NeuroImage, 2006, 31: 209–227

    Article  Google Scholar 

  29. Cui D, Liu X Z, Wan Y, et al. Estimation of genuine and random synchronization in multivariate neural series. Neural Netw, 2010, 23: 698–704

    Article  Google Scholar 

  30. Sakkalis V, Giurcaneanu C D, Xanthopoulos P, et al. Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm. IEEE Trans Inf Technol Biomed, 2009, 13: 433–441

    Article  Google Scholar 

  31. Finnerty T, Jefferys J R G. 9-16 Hz oscillation precedes secondary generalization of seizures in the rat tetanus toxin model of epilepsy. J Neurophysiol, 2000, 83: 2217–2226

    Google Scholar 

  32. Finnerty G T, Jefferys J R G. Investigation of the neuronal aggregate generating seizures in the rat tetanus toxin model of epilepsy. J Neurophysiol, 2002, 88: 2919–2927

    Article  Google Scholar 

  33. Li X L, Yao X, Fox J, et al. Interaction dynamics of neuronal oscillations analysed using wavelet transforms. J Neurosci Meth, 2007, 160: 178–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoLi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, D., Li, X., Ji, X. et al. Multi-channel neural mass modelling and analyzing. Sci. China Inf. Sci. 54, 1283–1292 (2011). https://doi.org/10.1007/s11432-011-4216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4216-9

Keywords