Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modeling multilook polarimetric SAR images with heavy-tailed rayleigh distribution and novel estimation based on matrix log-cumulants

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

With the improvements in modern radar resolution, the Gaussian-fluctuation model based on the central limit theorem does not accurately describe the scattering echo from targets. In contrast, the heavytailed Rayleigh distribution, based on the generalized central limit theorem, performs well in modeling the synthetic aperture radar (SAR) images, whereas its application to multi-look image processing is difficult. We describe successful modeling of multilook polarimetric SAR images with the heavy-tailed Rayleigh distribution and present novel parameter estimators based on matrix log-cumulants for the heavy-tailed Rayleigh distribution including the equivalent number of looks (ENL). First, a compound variable of heavy-tailed Rayleigh distribution is divided into a product of a positive alpha-stable variable and a complex Gaussian variable. The parameter estimations of the characteristic exponent and scale parameter based on log-cumulants in a single polarization channel are then derived. Second, the matrix log-cumulants (MLCs) for full polarization in multilook images are obtained, which can be applied to estimate model parameters. Therefore, a novel ENL estimator based on MLC is presented that describes the model more precisely. Extended to all other multivariable product models, this estimator performs better than existing methods. Finally, calculations on both simulated and real data are performed that give good fits with theoretical results. Multilook processing in one image with a fixed pixel number can improve parameter estimations over single-look processing. Our heavy-tailed Rayleigh model with its parameter estimation provides a new method to analyze the multilook polarimetric SAR images for target detection and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham D A, Lyons A P. Bootstrapped k-distribution parameter estimation. In: OCEANS 2006. Boston, 2006. 1–6

    Chapter  Google Scholar 

  2. Yacoub M D, Fraidenraich G. Joint statistics for two correlated weibull variates. IEEE Ant Wirel Prop Lett, 2005, (4): 129–132

    Google Scholar 

  3. Madhavan A, Radhakrishna J, Savitha P, et al. Modeling and simulation of radar sea clutter using k-distribution. In: Proceedings of the International Conference on Signal Processing and Communications (SPCOM’ 04). 2004. 368–372

    Google Scholar 

  4. Farina A, Russo A, Scannapieco F, et al. Theory of Radar detection in coherent weibull clutter. P IEEE, 1987, 134: 174–190

    Google Scholar 

  5. Liu T, Huang G-M, Wang X-S, et al. Statistics of the polarimetric weibull-distributed electromagnetic wave. IEEE Trans Antenn Propag, 2009, 57: 3232–3248

    Article  MathSciNet  Google Scholar 

  6. Meyer D P, Mayer H A. Radar Target Detection-Handbook of Theory and Practice. New York/London: Academic Press, 1973. 64–82

    Google Scholar 

  7. Irving W W, Owirka G J, Novak L M. Adaptive processing of polarimetric SAR imagery. In: 24th Asilomar Conference on Signals, Systems, and Computers. CA: Pacific Grove, 1990. 388–389

    Google Scholar 

  8. Tur M, Chin K C, Goodman J W. When is speckle noise multiplicative? Appl Optics, 1982, 21: 1157–1159

    Article  Google Scholar 

  9. Frery A C, Muller H J, Yanasse C C F. A model for extremely heterogeneous clutter. IEEE Trans Geosci Remote, 1997, 35: 648–659

    Article  Google Scholar 

  10. Pierce R D. RCS Characterization using the alpha-stable distribution. In: Proceedings of 1996 IEEE National Radar Conference, Ann Arbor. MI, 1996. 154–159

    Chapter  Google Scholar 

  11. Panagiotis T, Chrysostomos L N. Maximum likelihood localization of source in noise modeled as a stable process. IEEE Trans Signal Proces, 1995, 43: 2700–2713

    Article  Google Scholar 

  12. Achim A, Kuruoglu E E, Zerubia J. SAR image filtering based on the heavy-tailed Rayleigh model. IEEE Trans Image Process, 2006, 15: 2686–2693

    Article  Google Scholar 

  13. Kuruoglu E E, Zerubia J. Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans Image Process, 2004, 13: 527–533

    Article  Google Scholar 

  14. Li H-C, Hong W, Wu Y-R, et al. An efficient and flexible statistical model based on generalized gamma distribution for amplitude SAR images. IEEE Trans Geosc Remote, 2010, 48: 2711–2722

    Article  Google Scholar 

  15. Kuruoglu E E, Molina C, Fitzgerald W J. Approximation of alpha-stable probability densities using finite mixtures of Gaussian. In: Proceedings of EUSIPCO’98 European Signal Processing Conference. Rhodes, Greece, 1998. 989–992

    Google Scholar 

  16. Samorodnisky G, Taqqu M S. Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance. New York: Chapman and Hall, 1994

    Google Scholar 

  17. Nicolas J M. Introduction aux statistique de deuxi’emeesp’ece: application des logs-moments et des logs-cumulants’ al’analyse des lois d’images radar(in French). Trait du Signal, 2002, 19: 139–167

    MATH  Google Scholar 

  18. Achim A, Tsakalides P, Bezerianos A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans Geosci Remote, 2003, 41: 1773–1784

    Article  Google Scholar 

  19. Anfinsen S N, Doulgeris A P, Eltoft T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans Geosci Remote, 2009, 47: 3795–3809

    Article  Google Scholar 

  20. Lee J S, Schuler D L, Lang R H, et al. K distribution for multilook processed polarimetric SAR imagery. In: International Geoscience and Remote Sensing Symposium, 1994. IGARSS’ 94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Pasadena, 1994. 2179–2181

    Google Scholar 

  21. Goodman N R. Statistical analysis based on a certain complex Gaussian distribution (an introduction). Ann Math Stat, 1963, 34: 152–177

    Article  MATH  Google Scholar 

  22. Anfinsen S N, Eltoft T. Application of the matrix-variate mellin transform to analysis of polarimetric radar images. IEEE Trans Geosci Remote, 2011, 49: 2281–2295

    Article  Google Scholar 

  23. Anfinsen S N, Doulgeris A P, Eltoft T. Goodness-of-fit tests for multilook polarimetric radar data based on the mellin transform. IEEE Trans Geosci Remote, 2011, 49: 2764–2781

    Article  Google Scholar 

  24. Chambers J M, Mallows C L, Stuck B W. A method for simulating stable random variables. J Am Stat Assoc, 1976, 71: 340–344

    Article  MathSciNet  MATH  Google Scholar 

  25. Weron A, Weron R. Computer simulation of levy alpha-stable variables and processes. Lect Notes Phys, 1995, 457: 379–392

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Cui, H., Mao, T. et al. Modeling multilook polarimetric SAR images with heavy-tailed rayleigh distribution and novel estimation based on matrix log-cumulants. Sci. China Inf. Sci. 56, 1–14 (2013). https://doi.org/10.1007/s11432-012-4736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4736-y

Keywords