Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive neural network tracking design for a class of uncertain nonlinear discrete-time systems with dead-zone

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, the stability and control issues of a class of uncertain nonlinear discrete-time systems in the strict feedback form are investigated. The dead-zone input in the systems, whose property is non-symmetric and discretized, is investigated. The unknown functions in the systems are approximated by using the radial basis function neural networks (RBFNNs). Backstepping design procedure is employed in the controller and the adaptation laws design. Lyapunov analysis method is utilized to prove the stability of the closed-loop system. A simulation example is given to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H G, Wang Y, Liu D. Delay-dependent guaranteed cost for uncertain stochastic fuzzy systems with multiple time delays. IEEE Trans Syst Man Cybern Part B: Cybern, 2008, 38: 126–140

    Article  Google Scholar 

  2. Xu X H, Zhang J Y, Zhang W H. Mean square exponential stability of stochastic neural network with reaction-diffusion terms and delays. Appl Math Lett, 2011, 24: 5–11

    Article  MATH  MathSciNet  Google Scholar 

  3. Wang Z S, Zhang H G, Li P. An LMI approach to stability analysis of reaction-diffusion Cohen-Grossberg neural networks concerning with Dirichlet boundary conditions and distributed delays. IEEE Trans Syst Man Cybern Part B: Cybern, 2010, 40: 1596–1606

    Article  Google Scholar 

  4. Dong J X, Yang G H. H infinity controller synthesis via switched PDC scheme for discrete-time T-S fuzzy systems. IEEE Trans Fuzzy Syst, 2009, 17: 544–555

    Article  Google Scholar 

  5. Zhang H G, Quan Y B. Modeling, identification, and control of a class of nonlinear systems. IEEE Trans Fuzzy Syst, 2001, 9: 349–354

    Article  Google Scholar 

  6. Tong S C, Li C Y, Li Y M. Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst, 2009, 160: 2755–2775

    Article  MATH  MathSciNet  Google Scholar 

  7. Tong S C, He X L, Zhang H G. A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans Fuzzy Syst, 2009, 17: 1059–1069

    Article  Google Scholar 

  8. Chen W S, Li J M. Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern Part B: Cybern, 2008, 38: 258–266

    Article  Google Scholar 

  9. Chen W S, Jiao L C, Li J, et al. Adaptive NN backstepping output-feedback control for stochastic nonlinear strictfeedback systems with time-varying delays. IEEE Trans Syst Man Cybern Part B: Cybern, 2010, 40: 939–950

    Article  Google Scholar 

  10. Chen M, Ge S S, Ren B B. robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neur Netw, 2010, 21: 796–812

    Article  Google Scholar 

  11. Yoo S J, Park J B. Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans Syst Man Cybern Part B: Cybern, 2009, 39: 1316–1323

    Google Scholar 

  12. Li Z J, Cao X Q, Ding N. Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic timevarying communication delays. IEEE Trans Fuzzy Syst, 2011, 19: 745–757

    Article  Google Scholar 

  13. Chen M, Ge S S, Ren B B. Robust attitude control of helicopters with actuator dynamics using neural networks. IET Contr Theory Appl, 2010, 4: 2837–2854

    Article  MathSciNet  Google Scholar 

  14. Chen M, Jiang B, Zou J, et al. Robust adaptive tracking control of the underwater robot with input nonlinearity using neural networks. Int J Comput Intell Syst, 2010, 3: 646–655

    Article  Google Scholar 

  15. Tong S C, Li Y M. Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties. Sci China Inf Sci, 2010, 53: 307–324

    Article  MathSciNet  Google Scholar 

  16. Li T S, Wang D, Feng G. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans Syst Man Cybern Part B: Cybern, 2010, 40: 915–927

    Article  Google Scholar 

  17. Tong S C, Ren C E, Li Y M. Adaptive fuzzy decentralized control for nonlinear large-scale systems based on high-gain observer. Sci China Inf Sci, 2012, 55: 228–242

    Article  MathSciNet  Google Scholar 

  18. Li H X, Tong S C. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans Fuzzy Syst, 2003 11: 24–34

    Article  Google Scholar 

  19. Wang M, Zhang S Y, Chen B, et al. Direct adaptive neural control for stabilization of nonlinear time-delay systems. Sci China Inf Sci, 2010, 53: 800–812

    Article  MathSciNet  Google Scholar 

  20. Li Z J, Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators. Eng Appl Artif Intell, 2008, 21: 985–1000

    Article  Google Scholar 

  21. Li Z J, Xu C Q. Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums. Fuzzy Sets Syst, 2009, 160: 1787–1803

    Article  MATH  Google Scholar 

  22. Yoo S J, Park J B, Choi Y H. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Trans Neural Netw, 2008, 19: 1712–1726

    Article  Google Scholar 

  23. Ge S S, Li G Y, Lee T H. Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica, 2003, 39: 807–819

    Article  MATH  MathSciNet  Google Scholar 

  24. Jagannathan S, Lewis F L. Discrete-time neural net controller for a class of nonlinear dynamical systems. IEEE Trans Autom Control, 1996, 41: 1693–1699

    Article  MATH  MathSciNet  Google Scholar 

  25. Ge S S, Li G Y, Zhang J, et al. Direct adaptive control for a class of MIMO nonlinear systems using neural networks. IEEE Trans Autom Control, 2004, 49: 2001–2006

    Article  MathSciNet  Google Scholar 

  26. Ge S S, Zhang J, Lee T H. State feedback neural network control of a class of discrete MIMO nonlinear systems with disturbances. IEEE Trans Syst Man Cybern Part B: Cybern, 2004, 34: 1630–1645

    Article  Google Scholar 

  27. Li H X, Deng H. An approximate internal model based neural control for unknown nonlinear discrete processes. IEEE Trans Neural Netw, 2006, 17: 659–670

    Article  Google Scholar 

  28. Yang C G, Ge S S, Xiang C, et al. Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans Neural Netw, 2008, 19: 1873–1886

    Article  Google Scholar 

  29. Zhou J, Shen X Z. Robust adaptive control of nonlinear uncertain plants with unknown dead-zone. IEE Proc Control Theory Appl, 2007, 1: 25–32

    Article  MathSciNet  Google Scholar 

  30. Yoo S J, Park J B, Choi Y H. Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs. Automatica, 2009, 45: 436–443

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang X S, Su C Y, Hong H. Robust adaptive control of a class of linear systems with unknown dead-zone. Automatica, 2004, 40: 407–413

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhou J, Wen C, Zhang Y. Adaptive output control of nonlinear systems with uncertain dead zone nonlinearity. IEEE Trans Autom Control, 2006, 51: 504–511

    Article  MathSciNet  Google Scholar 

  33. Ibrir S, Xie W F, Su C Y. Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica, 2007, 43: 522–530

    Article  MATH  MathSciNet  Google Scholar 

  34. Lewis F L, Tim W K, Wang L Z, et al. Dead-zone compensation in motion control systems using adaptive fuzzy logic control. IEEE Trans Control Syst Technol, 1999, 7: 731–741

    Article  Google Scholar 

  35. Selmic R R, Lewis F L. Dead-zone compensation in motion control systems using neural networks. IEEE Trans Autom Control, 2000, 45: 602–613

    Article  MATH  MathSciNet  Google Scholar 

  36. Tong S C, Li Y M. Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans Fuzzy Syst, 2012, 20: 168–180

    Article  Google Scholar 

  37. Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 2011, 47: 452–465

    Article  MATH  MathSciNet  Google Scholar 

  38. Chen M, Ge S S, How B V, et al. Robust adaptive position mooring control for marine vessels. IEEE Trans Control Syst Technol, 2012, DOI: 10.1109/TCST.2012.2183676

    Google Scholar 

  39. Tao G, Kokotovic P V. Discrete-time adaptive control of plants with unknown output dead-zones. Automatica, 1995, 31: 287–291

    Article  MATH  MathSciNet  Google Scholar 

  40. Campos J, Lewis F L. Dead-zone compensation in discrete-time using adaptive fuzzy logic. IEEE Trans Fuzzy Syst, 1999, 7: 697–707

    Article  Google Scholar 

  41. Zhang X, Zhang H G, Liu D R, et al. Neural-network-based reinforcement learning controller for nonlinear systems with non-symmetric dead-zone inputs. In: IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, Nashville, 2009. 124–129

    Chapter  Google Scholar 

  42. Deolia V K, Purwar S, Sharma T N. Backstepping control of discrete-time nonlinear system under unknown dead-zone constraint. In: International Conference on Communication Systems and Network Technologies, San Francisco, 2011. 344–349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanJun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, L. & Tong, S. Adaptive neural network tracking design for a class of uncertain nonlinear discrete-time systems with dead-zone. Sci. China Inf. Sci. 57, 1–12 (2014). https://doi.org/10.1007/s11432-012-4779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4779-0

Keywords