Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Iterative signal reconstruction of deliberately clipped SMT signals

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Staggered MultiTone (SMT) is a modulation technique showing significantly reduced Adjacent Channel Leakage Ratio (ACLR) resulting in a more compact Power Spectrum Density (PSD) for the transmitted signal, than the well-known and already widely adopted Orthogonal Frequency Division Multiple Access (OFDMA) scheme. However, the unique spectral properties of an SMT signal could be degraded by a non-linear element (e.g. a Power Amplifier (PA)) in the transmitter. Deliberate baseband clipping can be applied to the transmitted signal, reducing the notable high Peak-to-Average Power Ratio (PAPR). The objective of this paper is to give a brief introduction to the SMT scheme, with a special emphasis on deliberate clipping effects and their compensation. The paper introduces two receiver-oriented iterative methods aiming at the restoration of the baseband Bit Error Rate (BER) performance of a non-clipped signal. The methods are evaluated and compared based on numerical simulations. The paper concludes with the selection of a possible candidate for use in systems applying deliberately clipped SMT signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dahlman E, Parkvall S, Sköld J. 4G: LTE/LTE-Advanced for Mobile Broadband. Elsevier Ltd., 2011

    Google Scholar 

  2. Fazel K, Kaiser S. Multi-Carrier and Spread Spectrum Systems. 2nd ed. Wiley, 2008

    Book  Google Scholar 

  3. Medjahdi Y, Terre M, Le Ruyet D, et al. Performance analysis in the downlink of asynchronous OFDM/FBMC based multi-cellular networks. IEEE Trans Wirel Commun, 2011, 10: 2630–2639

    Article  Google Scholar 

  4. Premnath S, Wasden D, Kasera S K, et al. Beyond OFDM: best-effort dynamic spectrum access using filterbank multicarrier. In: 4th International Conference on Communication Systems and Networks, Bangalore, 2012. 1–10

    Google Scholar 

  5. Baltar L G, Schaich F. Computational complexity analysis of advanced physical layers based on multicarrier modulation. In: Future Network & Mobile Summit, Warsaw, 2011. 1–8

  6. Datta R, Fettweis G, Kollár Z, et al. FBMC and GFDM interference cancellation schemes for flexible digital radio PHY design. In: 14th Euromicro Conference on Digital System Design, Oulu, 2011. 335–339

    Google Scholar 

  7. Hu S, Wu G, Li T, et al. Preamble design with ICI cancellation for channel estimation in OFDM/OQAM system. IEICE Trans Commun, 2011, E93.B: 211–214

    Google Scholar 

  8. Kollár Z, Horváth P. Physical layer considerations for cognitive radio: modulation techniques. In: IEEE 73rd Vehicular Technology Conference, Budapest, 2011. 1–5

    Google Scholar 

  9. Skrzypczak A, Siohan P, Javaudin J P. Power spectral density and cubic metric for the OFDM/OQAM modulation. In: IEEE International Symposium on Signal Processing and Information Technology, Vancouver, 2006. 846–850

    Google Scholar 

  10. Khodjet-Kesba M, Saber C, Roviras D, et al. Multicarrier interference evaluation with jointly non-linear amplification and timing errors. In: IEEE 73rd Vehicular Technology Conference, Budapest, 2011. 1–5

    Google Scholar 

  11. Li X, Cimini L J. Effects of clipping and filtering on the performance of OFDM. IEEE Commun Lett, 1998, 2: 131–133

    Article  MATH  Google Scholar 

  12. Xiao Y, Bai W L, Dan L L, et al. Performance analysis of peak cancellation in OFDM systems. Sci China Inf Sci, 2012, 55: 789–794

    Article  MATH  MathSciNet  Google Scholar 

  13. Deumal M, Behravan A, Eriksson T, et al. Constrained clipping for peak reduction of multicarrier systems by tone reservation. In: IEEE 65th Vehicular Technology Conference, Dublin, 2007. 2195–2199

    Google Scholar 

  14. Dan L L, Xiao Y, Cheng P, et al. A low-complexity multiple signal representation scheme in downlink OFDM-CDMA. Sci China Ser F-Inf Sci, 2009, 52: 2433–2444

    Article  MATH  Google Scholar 

  15. Chen H, Haimovich A H. Iterative estimation and cancellation of clipping noise for OFDM signals. IEEE Commun Lett, 2003, 7: 305–307

    Article  Google Scholar 

  16. Kollár Z, Varga L, Czimer K. Clipping-based iterative PAPR-reduction techniques for FBMC. In: OFDM-Workshop 2012, Esssen, 2012. 139–145

    Google Scholar 

  17. Yuen C H, Amini P, Farhang-Boroujeny B. Single carrier frequency division multiple access (SC-FDMA) for filter bank multicarrier communication systems. In: Proceedings of the IEEE 5th International Conference on Cognitive Radio Oriented Wireless Networks & Communications, Cannes, 2010. 1–5

    Google Scholar 

  18. Gazda J, Drotár P, Kocur D, et al. Joint evaluation of nonlinear distortion effects and signal metrics in OFDM based transmission systems. Acta Electrotech Inf, 2009, 9: 55–60

    Google Scholar 

  19. Kollár Z, Horváth P. Modulation schemes for cognitive radio in white spaces. Radioengineering, 2010, 19: 511–517

    Google Scholar 

  20. Viholainen A, Ihalainen T, Stitz H T, et al. Prototype filter design for filter bank based multicarrier transmission. In: Proceedings of the 17th European Signal Processing Conference, Glasgow, 2009. 1359–1363

    Google Scholar 

  21. Amini P, Farhang-Boroujeny B. Isotropic filter design for MIMO filter bank multicarrier communications. In: IEEE Sensor Array and Multichannel Signal Processing Workshop, Kibbutz, 2010. 89–92

    Google Scholar 

  22. Rowe E. Memoryless non-linearities with Gaussian inputs: elementary results. Bell Syst Tech J, 1982, 61: 1519–1525

    Article  Google Scholar 

  23. Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th printing. New York: Dover, 1972

    Google Scholar 

  24. Minkoff J. The role of am-to-pm conversion in memoryless nonlinear systems. IEEE Trans Commun, 1985, 33: 139–144

    Article  Google Scholar 

  25. Blachman N M. Detectors, bandpass nonlinearities, and their optimization: inversion of the Chebyshev transform. IEEE Trans Inform Theory, 1971, 17: 398–404

    Article  MATH  MathSciNet  Google Scholar 

  26. Armstrong J. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electron Lett, 2002, 38: 246–247

    Article  Google Scholar 

  27. Ihalainen T, Stitz H T, Renfors M. Efficient per-carrier channel equalizer for filter bank based multicarrier systems. In: IEEE International Symposium on Circuits and Systems, Kobe, 2005. 3175–3178

    Google Scholar 

  28. Kollár Z, Péceli G, Horváth P. Iterative decision feedback equalization for FBMC systems. In: Proceedings of IEEE First International Conference on Advances in Cognitive Radio, Budapest, 2011

    Google Scholar 

  29. Baltar L G, Nossek J. Multicarrier systems: a comparison between filter bank based and cyclic prefix based OFDM. In: OFDM-Workshop 2012, Essen, 2012. 6–10

    Google Scholar 

  30. Bahl L R, Cook J, Jelinek F, et al. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inform Theory, 1974, 20: 284–287

    Article  MATH  Google Scholar 

  31. Kollár Z, Gazda J, Horváth P, et al. Iterative compensation of baseband clipping in SMT transceivers. In: Radioelektronika 2012, Brno, 2012. 205–208

    Google Scholar 

  32. ten Brink S, Speidel J, Yan R H. Iterative demapping and decoding for multilevel modulation. In: Global Telecommunications Conference, Sydney, 1998. 579–584

    Google Scholar 

  33. Déjardin R, Colas M, Gelle G. On the iterative mitigation of clipping noise for COFDM transmissions. Eur Trans Telecommun, 2008, 19: 791–800

    Article  Google Scholar 

  34. ten Brink S. Designing iterative decoding schemes with the extrinsic information transfer chart. AEU-Int J Electron Commun, 2000, 54: 389–398

    Google Scholar 

  35. Bauch G. Turbo-equalization and transmit antenna diversity with space-time-codes in mobile communication (in German). VDI Verlag GmbH, 2001

    Google Scholar 

  36. Allén M, Levanen T, Marttila J, et al. Iterative signal processing for mitigation of analog-to-digital converter clipping distortion in multiband OFDMA receivers. J Elect Computer Eng, 2012, 2012: 1–16

    Article  Google Scholar 

  37. Sofer E, Chouinard G. WRAN channel modeling. IEEE 802.22-05/0055r7, 2005

    Google Scholar 

  38. Xiao Y, Li S, Lei X, et al. Clipping noise mitigation for channel estimation in OFDM systems. IEEE Commun Lett, 2006, 10: 474–476

    Article  Google Scholar 

  39. Bellanger M. Physical layer for future broadband radio systems. In: Proceedings of the IEEE Radio and Wireless Symposium, New Orleans, 2010. 436–439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Kollár.

Additional information

Digital Terrestrial Television Action Group. Understanding DVB-T2. http://www.digitag.org/DTTResources/DVBT2Handbook.pdf, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollár, Z., Gazda, J., Horváth, P. et al. Iterative signal reconstruction of deliberately clipped SMT signals. Sci. China Inf. Sci. 57, 1–13 (2014). https://doi.org/10.1007/s11432-013-4921-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4921-7

Keywords