Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The relationship between physical human-exoskeleton interaction and dynamic factors: using a learning approach for control applications

物理人机交互与人机动力学因素之间的关系: 利用机器学习实现控制应用

  • Research Paper
  • Special Focus on Robot Sensing and Dexterous Operation
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

During a human-exoskeleton collaboration, the interaction torque on exoskeleton resulting from the human cannot be clearly determined and conducted by normal physical models. This is because the torque depends not only on direction and orientation of both human-operator and exoskeleton but also on the physical properties of each operator. In this paper, we present our investigations on the relationship between the interaction torques with the dynamic factors of the human-exoskeleton systems using state-of-the-art learning techniques (nonparametric regression techniques) and provide control applications based on the findings. Experimental data was collected from various human-operators when they were attached to the designed exoskeleton to perform unconstraint motions with and without control. The results showed that regardless of how the experiments were done and which learning method was chosen, the resulting interaction could be best represented by time varying non-linear mappings of the operator’s angular position, and the exoskeleton’s angular position, velocity, and acceleration during locomotion. This finding has been applied to advanced controls of the lower exoskeletal robots in order to improve their performance while interacting with human.

概要

创新点

在穿戴者与外骨骼的人机交互协作过程中, 人体作用于外骨骼的交互力矩不仅与人机运动方向有关, 同时也取决于穿戴者自身的行走或运动习惯. 因此, 人机交互力矩的模型很难通过常规的物理模型来确定. 本文通过对机器学习技术(非参数化回归)最新发展情况的介绍来探究人与外骨骼交互过程中交互力矩与系统动力学因素之间的关系, 并在其结果基础上提出相关的控制应用. 我们邀请了不同的穿戴者进行测试实验, 每个穿戴者的测试都分别在有控制和无控制两种情况下进行了无约束的行走实验, 在这些测试基础上我们采集了我们需要的实验数据. 通过对实验数据的学习我们发现, 交互结果能够通过将穿戴者行走过程中的角度位置与在此过程中外骨骼的角度位置、 速度和加速度进行时变非线性映射来表征. 实验结果已经被用于外骨骼机器人的高级控制算法, 改善和提高了外骨骼与穿戴者交互性的表现.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kazerooni H, Racine J L, Huang L, et al. On the control of the Berkeley Lower Extremity Exoskeleton (BLEEX). In: Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, 2005. 4353–4360

    Google Scholar 

  2. Lee S, Sankai Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint. In: Proceedings of the IEEE International Conference on Intellegent Robots and Systems, Lausanne, 2002. 1499–1504

    Chapter  Google Scholar 

  3. Riener R, Lünenburger L, Jezernik S, et al. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Sys Rehabil Eng, 2005, 13: 380–394

    Article  Google Scholar 

  4. Hayashi T, Kawamoto H, Sankai Y. Control method of robot suit HAL working as operator’s muscle using biological and dynamical information. In: Proceedings of the IEEE International Conference on IROS, Center Edmont, Alberta, 2005. 3063–3068

    Google Scholar 

  5. Gomes M A, Silveira G L M, Siqueirav A A G. Gait pattern adaptation for a active lower-limb orthosis based on neural networks. Adv Robot, 2012, 25: 1903–1925

    Article  Google Scholar 

  6. Racine J L. Control of a Lower Extremity Exoskeleton for Human Performance Amplification. Dissertation for the Doctoral Degree. University of California, Berkeley, 2003

    Google Scholar 

  7. Sigaud O, Salaün C, Padois V. On-line regression algorithms for learning mechanical models of robots: a survey. Robot Auton Syst, 2011, 59: 1115–1129

    Article  Google Scholar 

  8. Kazerooni H, Chu A, Steger R. That which does not stabilize, will only make us stronger. Int J Robot Res, 2007, 26: 75–89

    Article  Google Scholar 

  9. Walsh C J, Endo K, Herr H. A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Hum Robot, 2007, 4: 487–506

    Article  Google Scholar 

  10. Zabaletal H, Bureau M, Eizmendi G, et al. Exoskeleton design for functional rehabilitation in patients with neurological disorders and stroke. In: Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, 2007. 112–118

    Google Scholar 

  11. Aguirre-Ollinger G, Colgate J E, Peshkin M A, et al. Active-impedance control of a lower-limb assistive exoskeleton. In: Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, 2007. 188–195

    Google Scholar 

  12. Winter D A. Biomechanics and Motor Control of Human Movement. 4th ed. New Jersey: Jonh Wiley and Sons Inc, 2009

    Book  Google Scholar 

  13. Vukobratović M, Matijevic V, Potkonjak V. Control of robots with elastic joints interacting dynamic environment. J Int Robot Sys, 1998, 23: 87–100

    Article  MATH  Google Scholar 

  14. Tsuji T, Tanaka Y. On-line learning of robot arm impedance using neural networks. Robot Auton Syst, 2005, 52: 257–271

    Article  Google Scholar 

  15. Šabanović A, Ohnishi K. Motion Control Systems. John Wiley and Sons Inc, 2011

    Google Scholar 

  16. Tsuji T, Ito K, Morasso P G. Neural network learning of robot arm impedance in operational space. IEEE Trans Syst Man Cybern, 1996, 26: 290–298

    Article  Google Scholar 

  17. Tran H-T, Cheng H, Duong M-K. Learning the relation of physical interaction to dynamic factors during human-exoskeleton collaboration. In: Proceedings of IEEE Conference on Multisensor Fusion and Information Integration, Beijing, 2014, in press

    Google Scholar 

  18. Rasmussen C E, Williams C K. Gaussian Processes for Machine Learning. Cambridge: MIT Press, 2006

    MATH  Google Scholar 

  19. Schaal S, Atkeson C G, Vijayakumar S. Scalable techniques from nonparametric statistics for real-time robot learning. Appl Intell, 2002, 17: 49–60

    Article  MATH  Google Scholar 

  20. Atkeson C G, Moore A W, Schaal S. Locally weighted learning. Artif Intell Rev, 1997, 11: 11–73

    Article  Google Scholar 

  21. Vijayakumar S, Schaal S. Locally weighted projection regression: an O(n) algorithm for incremental real time learning in high dimensional space. In: Proceeding of the 16th Conference on Machine Learning, San Francisco, 2000. 1076–1089

    Google Scholar 

  22. Nakanishi J, Farrell J A, Schaal S. Composite adaptive control with locally weighted statistical learning. Neural Netw, 2005, 18: 71–90

    Article  MATH  Google Scholar 

  23. Vijayakumar S, D’Souza A, Schaal S. Incremental online learning in high dimensions. Neural Comput, 2005, 12: 2602–2634

    Article  MathSciNet  Google Scholar 

  24. Klanke S, Vijayakumar S, Schaal S. A library for locally weighted projection regression. J Mach Learn Res, 2008, 9: 623–626

    MathSciNet  MATH  Google Scholar 

  25. Tran H-T, Cheng H, Duong M-K, et al. Fuzzy-based impedance regulation for control of the coupled human-exoskeleton system. In: Proceedings of the IEEE Conference on Robotics and Biomimetics, Bali, 2014, in press

    Google Scholar 

  26. Hogan N. Impedance control: an approach to manipulation. Part I, II, III. J Dyn Syst Meas Contr, 1985, 107: 1–24

    Article  MATH  Google Scholar 

  27. Unluhisarcikli O, Pietrusinski M, Weinberg B, et al. Design and control of a robotic lower extremity exoskeleton for gait rehabilitation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 2011. 25–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, HT., Cheng, H., Lin, X. et al. The relationship between physical human-exoskeleton interaction and dynamic factors: using a learning approach for control applications. Sci. China Inf. Sci. 57, 1–13 (2014). https://doi.org/10.1007/s11432-014-5203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5203-8

Keywords

关键词