Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Secrecy outage analysis for underlay cognitive radio networks over correlated channels

下垫式认知无线电网络在相关信道中的保密中断性能分析

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the secrecy outage performance of underlay cognitive radio networks, in which a source in a secondary system transmits its confidential information to a legitimate destination in the presence of an eavesdropper. Specifically, the main (the source-to-destination) and eavesdropping (the sourceto- eavesdropper) channels are assumed to be correlated. Moreover, it is also assumed that the main channel and the channel from the source to the primary user’s receiver are correlated. Tight closed-form analytical expression for secrecy outage probability and the closed-form analytical expression for the probability of non-zero secrecy capacity are derived and validated by simulation results when the interference temperature limit is comparably large.

摘要

创新点

  1. 1)

    在相关瑞利衰落信道中, 我们推导出保密中断概率的紧凑闭合表达式. 从仿真结果中, 我们发现当干扰温度阀值相对较大时, 所推导出的近似表达式是准确的.

  2. 2)

    同时, 我们也推导出非零安全容量概率的解析表达式。

中文摘要

本文研究了下垫式认知无线电网络的保密中断性能. 在此系统中, 次级系统的信源发送保密信息到合法用户, 同时此信息被窃听者窃听. 在考虑了主信道 (信源到信宿) 和窃听信道 (信源到窃听者) 具有一定的相关性和主信道与信源到主用户接收端的信道也具有相关性的场景下, 推导出保密中断概率和非零安全容量概率的紧凑闭合表达式. 同时, 用仿真结果验证了在干扰温度阀值相对较大时所推导的表达式的正确性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyner A. The wire-tap channel. Bell Syst Tech J, 1975, 5: 1355–1367

    Article  MathSciNet  MATH  Google Scholar 

  2. Liang Y B, Somekh-Baruch A, Poor H V, et al. Capacity of cognitive interference channels with and without secrecy. IEEE Trans Inf Theory, 2009, 55: 604–619

    Article  MathSciNet  Google Scholar 

  3. Liang Y B, Poor H V, Ying L. Secure communications over wireless broadcast networks: stability and utility maximization. IEEE Trans Inf Foren Secur, 2011, 6: 682–692

    Article  Google Scholar 

  4. Bloch M, Barros J, Rodrigues M R D, et al. Wireless information-theoretic security. IEEE Trans Inf Theory, 2008, 54: 2515–2534

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang H-M, Zheng T-X, Yuan J, et al. Physical layer security in heterogeneous cellular networks. IEEE Trans Commun, 2016, 64: 1204–1219

    Article  Google Scholar 

  6. Wang H-M, Xia X-G. Enhancing wireless secrecy via cooperation: signal design and optimization. IEEE Commun Mag, 2015, 53: 47–53

    Article  Google Scholar 

  7. Li Q, Song H, Huang K. Achieving secure transmission with equivalent multiplicative noise in MISO wiretap channels. IEEE Commun Lett, 2013, 17: 892–895

    Article  Google Scholar 

  8. Bashar S, Ding Z, Xiao C. On the secrecy rate of multi-antenna wiretap channel under finite-alphabet input. IEEE Commun Lett, 2011, 15: 527–529

    Article  Google Scholar 

  9. Haykin S. Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun, 2005, 23: 201–220

    Article  Google Scholar 

  10. Hossain E, Bhargava V. Cognitive Wireless Communication Networks. New York: Springer, 2007

    Book  Google Scholar 

  11. Sharma R K, Rawat D B. Advances on security thrats and countermeasures for cognitive radio networks: a survey. IEEE Commun Surv Tut, 2015, 57: 1023–1043

    Article  Google Scholar 

  12. Zou Y, Zhu J, Yang L, et al. Securing physical-layer communications for cognitive radio networks. IEEE Commun Mag, 2015, 53: 48–54

    Article  Google Scholar 

  13. Wang C, Wang H-M. On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Trans Inf Foren Secur, 2014, 9: 1814–1827

    Article  Google Scholar 

  14. Mokari N, Parsaeefard S, Saeedi H, et al. Cooperative secure resource allocation in cognitive radio networks with guaranteed secrecy rate for primary users. IEEE Trans Wirel Commun, 2014, 13: 1058–1073

    Article  Google Scholar 

  15. Alhakami W, Mansour A, Safdar G A, et al. A secure MAC protocol for cognitive radio networks (SMCRN). In: Proceedings of Science and Information Conference (SAI), London, 2013. 796–803

    Google Scholar 

  16. Tang C, Pan G, Li T. Secrecy outage analysis of underlay cognitive radio unit over Nakagami-m fading channels. IEEE Wirel Commun Lett, 2014, 3: 609–612

    Article  Google Scholar 

  17. Chen Y X, Tellambura C. Distribution functions of selection combiner output in equally correlated Rayleigh, Rician, and Nakagami-m fading channels. IEEE Trans Commun, 2004, 52: 1948–1956

    Article  Google Scholar 

  18. Papoulis A, Pillai S U. Probability, Random Variables and Stochastic Processes. 4th ed. New York: McGraw-Hill, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, H. & Pan, G. Secrecy outage analysis for underlay cognitive radio networks over correlated channels. Sci. China Inf. Sci. 60, 022307 (2017). https://doi.org/10.1007/s11432-015-0973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-0973-8

Keywords

关键词