Abstract
The outbreak of hotspot in social network may contain complex dynamic genesis. Using user behavior data from hotspots in social network, we study how different user groups play different roles for a hotspot topic. Firstly, by analyzing users’ behavior records, we mine group situation that promotes the hotspot. Several major attributions in a hotspot outbreak, such as individual, peer and group triggers, are defined formally according to the view-point of social identity, social interaction, retweet depth and opinion leader. Secondly, for the problem of the uneven and sparse data in each stage of hotspot topic’s life cycle, we propose a dynamic influence model based on grey system to formalize the effect of different groups. Then the process of hotspot evolution driven by distinct crowd is showed dynamically. The experimental result confirms that the model is able not only to qualify users’ influence on a hotspot topic but also to predict effectively an upcoming change in a hotspot topic.
摘要
创新点
-
1.
基于在线用户群体行为关系网络, 考虑话题演化复杂的线上、 线下动力学成因, 针对热点话题普遍存在生命周期各阶段数据不均匀以及稀疏性问题, 利用灰色系统理论基础思想和方法, 构建热点话题用户行为影响力模型, 发现社交网络平台中大众话题变化趋势的背后推动力量.
-
2.
融合微观度量和中观视角的研究方法, 依据用户关系特性划分网络群体, 通过时间离散化及时间切片方法, 提出一种动态的热点话题用户行为影响力评估模型. 使其能够动态化、 阶段化展现不同用户群体在热点话题产生、发展、消亡生命周期演化过程中的量化推动影响力.
-
3.
本文提出的用户行为影响力模型不仅能够根据在线社交网络的话题演化相关驱动属性, 挖掘每个热点话题在生命周期中的不同时间段内动态的推动群体, 而且能够对下一时间段的话题互动变化量进行预测, 为舆情管控、 网络水军的发现提供有力依据.
Similar content being viewed by others
References
Guille A, Hacid H, Favre C, et al. Information diffusion in online social networks: a survey. ACM SIGMOD Rec, 2013, 42: 17–28
Li D, Xu Z, Li S, et al. Link recommendation for promoting information diffusion in social networks. In: Proceedings of the 22nd International Conference on World Wide Web Companion, Brazil, 2013. 185–186
Agrawal D, Budak C, El Abbadi A. Information diffusion in social networks: observing and affecting what society cares about. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York: ACM, 2011. 2609–2610
Neto S M B, Cavalin P R, Pinhanez C S, et al. Reaction times for user behavior models in microblogging online social networks. In: Proceedings of the 2013 Workshop on Data-driven User Behavioral Modelling and Mining from Social Media, San Francisco, 2013
Bakshy E, Rosenn I, Marlow C, et al. The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, Lyon, 2012. 519–528
Rodriguez M G, Leskovec J, Schölkopf B. Structure and dynamics of information pathways in online media. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining, Rome, 2013. 23–32
Kwak H, Lee C, Park H, et al. What is twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, Raleigh, 2010. 591–600
Wu S, Hofman J M, Mason W A, et al. Who says what to whom on twitter. In: Proceedings of the 20th International Conference on World Wide Web, Hyderabad, 2011. 705–714
Venkatanathan J, Karapanos E, Kostakos V, et al. A network science approach to modelling and predicting empathy. In: Proceedings of 2013 International Conference on Advances in Social Networks Analysis and Mining, Niagara Falls, 2013. 1395–1400
He X R, Kempe D. Stability of influence maximization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014. 1256–1265
Romero D M, Galuba W, Asur S, et al. Influence and passivity in social media. Lect Notes Comput Sci, 2011, 6913: 18–33
Ren J, Cheng Z, Shen J, et al. Influences of influential users: an empirical study of music social network. In: Proceedings of International Conference on Internet Multimedia Computing and Service, Xiamen, 2014
Tang J, Sun J, Wang C, et al. Social influence analysis in large-scale networks. In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Paris, 2009. 807–816
Aral S, Walker D. Identifying influential and susceptible members of social networks. Science, 2012, 337: 337–341
Matsumura N, Ohsawa Y, Ishizuka M. Influence diffusion model in text-based communication. Trans Jap Soc Artif Intell, 2002, 17: 259–267
Sharifi B, Hutton M, Kalita J. Experiments in microblog summarization. In: Proceedings of the 2010 IEEE 2nd International Conference on Social Computing, Minneapolis, 2010. 49–56
Mishne G, de Rijke M. Capturing global mood levels using blog posts. In: Proceedings of AAAI 2006 Spring Symposium on Computational Approaches to Analysing Weblogs, Palo Alto, 2006. 145–152
Cataldi M, Mittal N, Aufaure M A. Estimating domain-based user influence in social networks. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing. New York: ACM, 2013. 1957–1962
Saez-Trumper D, Comarela G, Almeida V, et al. Finding trendsetters in information networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012. 1014–1022
Jung Y, Gray R, Lampe C, et al. Favors from facebook friends: unpacking dimensions of social capital. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2013. 11–20
Gomez Rodriguez M, Leskovec J, Krause A. Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2010. 1019–1028
Kibanov M, Atzmueller M, Scholz C, et al. Temporal evolution of contacts and communities in networks of face-to-face human interactions. Sci China Inf Sci, 2014, 57: 032103
Lin Y I, Liu S. A historical introduction to grey systems theory. In: Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics. Washington DC: IEEE, 2004. 2403–2408
Cha M, Benevenuto F, Gummadi P K, et al. Measuring user influence in twitter: the million follower fallacy. In: Proceedings of International AAAI Conference on Weblogs and Social Media, Washington DC, 2010. 10–17
Li F, Du T C. Who is talking? An ontology-based opinion leader identification framework for word-Of-mouth marketing in online social blogs. Decis Support Syst, 2011, 51: 190–197
Papagelis M, Murdock V, van Zwol R. Individual behavior and social influence in online social systems. In: Proceedings of the 22nd ACM Conference on Hypertext and Hypermedia. New York: ACM, 2011. 241–250
Yuan N J, Zheng Y, Zhang L, et al. T-finder: a recommender system for finding passengers and vacant taxis. IEEE Trans Knowl Data Eng, 2013, 25: 2390–2403
Lu L, Zhang Y, Yeung C H, et al. Leaders in social networks, the delicious case. Plos One, 2011, 6: e21202
Pakzad F, Abhari A. Characterization of user networks in facebook. In: Proceedings of the 2010 Spring Simulation Multiconference, San Diego, 2010
Park B, Lee K, Kang N. The impact of influential leaders in the formation and development of social networks. In: Proceedings of the 6th International Conference on Communities and Technologies. New York: ACM, 2013. 8–15
Tang X, Yang C C. Ranking user influence in healthcare social media. ACM Trans Intell Syst Technol, 2012, 3: 565–582
Tang J, Wu S, Sun J. Confluence: conformity influence in large social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013. 347–355
Carrington P J, Scott J, Wasserman S. Models and Methods in Social Network Analysis. Cambridge: Cambridge University Press, 2005. 37
Dong Y, Ke Q, Cai Y, et al. Teledata: data mining, social network analysis and statistics analysis system based on cloud computing in telecommunication industry. In: Proceedings of the 3rd International Workshop on Cloud Data Management. New York: ACM, 2011. 41–48
Deng J L. Introduction to grey system theory. J Grey Syst, 1989, 1: 1–24
Meerschaert M M. Mathematical Modeling. Oxford: Academic Press, 1993
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xiao, Y., Ma, J., Liu, Y. et al. A dynamic influence model of social network hotspot based on grey system. Sci. China Inf. Sci. 58, 1–12 (2015). https://doi.org/10.1007/s11432-015-5439-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-015-5439-y