Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Global practical tracking for stochastic time-delay nonlinear systems with SISS-like inverse dynamics

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the practical tracking problem of stochastic delayed nonlinear systems. The powers of the nonlinear terms are relaxed to a certain interval rather than a precisely known point. Based on the Lyapunov-Krasovskii (L-K) functional method and the modified adding a power integrator technique, a new controller is constructed to render the solutions of the considered system to be bounded in probability, and furthermore, the tracking error in sense of the mean square can be made small enough by adjusting some designed parameters. A simulation example is provided to demonstrate the validity of the method in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang W H, Chen B S. On stabilizability and exact observability of stochastic systems with their applications. Automatica, 2004, 40: 87–94

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhang W H, Zhang H S, Chen B S. Generalized Lyapunov equation approach to state-dependent stochastic stabilization/ detectability criterion. IEEE Trans Automat Contr, 2008, 53: 1630–1642

    Article  MathSciNet  Google Scholar 

  3. Xie X J, Duan N, Yu X. State-feedback control of high-order stochastic nonlinear systems with SiISS inverse dynamics. IEEE Trans Automat Contr, 2011, 56: 1921–1926

    Article  MathSciNet  Google Scholar 

  4. Zhao X Y, Deng F Q. Divided state feedback control of stochastic systems. IEEE Trans Automat Contr, 2015, 60: 1870–1885

    Article  MathSciNet  Google Scholar 

  5. Yu X, Xie X J. Output feedback regulation of stochastic nonlinear systems with stochastic iISS inverse dynamics. IEEE Trans Automat Contr, 2010, 55: 304–320

    Article  MathSciNet  Google Scholar 

  6. Wu M, He Y, She J H, et al. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004, 40: 1435–1439

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou G P, Huang J H, Tian F X, et al. Sufficient and necessary conditions for global stability of genetic regulator networks with time delays. Sci China Inf Sci, 2016, 59: 012202

    Google Scholar 

  8. Liu Z W, Zhang H G, Sun Q Y. Static output feedback stabilization for systems with time-varying delay based on a matrix transformation method. Sci China Inf Sci, 2015, 58: 012201

    MathSciNet  MATH  Google Scholar 

  9. Yan X H, Liu Y G. Global practical tracking by output-feedback for nonlinear systems with unknown growth rate. Sci China Inf Sci, 2011, 54: 2079–2090

    Article  MathSciNet  MATH  Google Scholar 

  10. Li W Q, Wu Z J. Output tracking of stochastic high-order nonlinear systems with Markovian switching. IEEE Trans Automat Contr, 2013, 58: 1585–1590

    Article  MathSciNet  Google Scholar 

  11. Li W Q, Zhang J F. Distributed practical output tracking of high-order stochastic multi-agent systems with inherent nonlinear drift and diffusion terms. Automatica, 2014, 50: 3231–3238

    Article  MathSciNet  MATH  Google Scholar 

  12. Li W Q, Liu L, Feng G. Distributed containment tracking of multiple stochastic nonlinear system. Automatica, 2016, 69: 214–221

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu Z J, Yang J, Shi P. Adaptive tracking for stochastic nonlinear systems with Markovian switching. IEEE Trans Automat Contr, 2010, 55: 2135–2141

    Article  MathSciNet  Google Scholar 

  14. Wu Z J, Cui M Y, Shi P. Vector backstepping control for stochastic Hamiltonian systems. SIAM J Control Optim, 2012, 50: 925–942

    Article  MathSciNet  MATH  Google Scholar 

  15. Xie X J, Zhao C R, Duan N. Further results on state feedback stabilization of stochastic high-order nonlinear systems. Sci China Inf Sci, 2014, 57: 072202

    MathSciNet  MATH  Google Scholar 

  16. Zhang K M, Zhao C R, Xie X J. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time delay. Int J Contr, 2015, 88: 2477–2487

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang W H, Chen B S. State feedback H8 control for a class of nonlinear stochastic systems. SIAM J Control Optim, 2006, 44: 1973–1991

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu Z P, Deng F Q. Robust H8 control for networked systems with transmission delays and successive packet dropouts under stochastic sampling. Int J Robust Nonlinear Contr, 2017, 27: 84–107

    Article  MATH  Google Scholar 

  19. Xie X J, Duan N. Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system. IEEE Trans Automat Contr, 2010, 55: 1197–1202

    Article  MathSciNet  Google Scholar 

  20. Jin S L, Liu Y G. Global practical tracking via adaptive output-feedback for uncertain nonlinear systems with generalized control coefficients. Sci China Inf Sci, 2016, 59: 012203

    Google Scholar 

  21. Xue L R, Zhang W H, Lin Y N. Global output tracking control for high-order stochastic nonlinear systems with SISS inverse dynamics and time-varying delays. J Franklin Inst, 2016, 353: 3249–3270

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun Z Y, Liu Z G, Zhang X H. New results on global stabilization for time delay nonlinear systems with low-order and high-order growth conditions. Int J Robust Nonlinear Contr, 2015, 25: 878–899

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu S J, Zhang J F, Jiang Z P. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica, 2007, 43: 238–251

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu S J, Ge S S, Zhang J F. Adaptive output-feedback control for a class of uncertain stochastic non-linear systems with time delays. Int J Contr, 2008, 81: 1210–1220

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun Z Y, Xue L R, Zhang K M. A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system. Automatica, 2015, 58: 60–66

    Article  MathSciNet  MATH  Google Scholar 

  26. Mao X R. Stochastic Differential Equations and Applications. North-Holland: Elsevier, 2007

    MATH  Google Scholar 

  27. Mao X R. A note on the LaSalle-type theorems for stochastic differential delay equations. Appl Math Comput, 2002, 268: 125–142

    MathSciNet  MATH  Google Scholar 

  28. Khalil H K, Grizzle J W. Nonlinear Systems. 3rd ed. New Jersey: Prentice Hall, 1996. 144–145

    Google Scholar 

  29. Wu Y Q, Liu Z G. Output feedback stabilization for time-delay nonholonomic systems with polynomial conditions. ISA Trans, 2015, 58: 1–10

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61573227, 61633014, 61673242, 61603231), State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS16011), Research Fund for the Taishan Scholar Project of Shandong Province of China, Postgraduate Innovation Funds of SDUST (No. SDKDYC170229), SDUST Research Fund (Grant No. 2015TDJH105), and Shandong Provincial Natural Science Foundation of China (Grant No. 2016ZRB01076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Zhang, W. & Xie, X. Global practical tracking for stochastic time-delay nonlinear systems with SISS-like inverse dynamics. Sci. China Inf. Sci. 60, 122201 (2017). https://doi.org/10.1007/s11432-016-0448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-0448-2

Keywords