Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Entropy optimization based filtering for non-Gaussian stochastic systems

  • Research Paper
  • Special Focus on Analysis and Synthesis for Stochastic Systems
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper is concerned with the entropy optimization based filter design for a class of multivariate dynamic stochastic systems with simultaneous presence of non-Gaussian process noise and measurement noise. The filter consists of time update and measurement update two steps, where the selection of the filter gain in the measurement update equation is a key issue to be addressed. Different from the classic Kalman filter theory, entropy rather than variance is employed as the filtering performance criterion due to the non-Gaussian characteristic of the estimation error. Following the establishment of the relationship between the probability density functions of random noises and estimation error, two kinds of entropy based performance indices are provided. On this basis, the corresponding optimal filter gains are obtained respectively by using the gradient optimization technique. Finally, some numerical simulations are provided to demonstrate the effectiveness of the proposed filtering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalman R E. A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng, 1960, 82: 35–45

    Article  Google Scholar 

  2. Anderson B D, Moore J B. Optimal Filtering. Englewood Cliffs: Prentice Hall, 1979

    MATH  Google Scholar 

  3. Simon D. Optimal State Estimation: Kalman, H , and Nonlinear Approaches. New York: Wiley, 2006

    Book  Google Scholar 

  4. Ding D R, Wang Z D, Ho D W C, et al. Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica, 2017, 78: 231–240

    Article  MATH  MathSciNet  Google Scholar 

  5. Ding D R, Wei G L, Zhang S J, et al. On scheduling of deception attacks for discrete-time networked systems equipped with attack detectors. Neurocomputing, 2017, 219: 99–106

    Article  Google Scholar 

  6. Fridman E, Shaked U. An improved delay-dependent H filtering of linear neutral systems. IEEE Trans Signal Process, 2004, 52: 668–673

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang Z D, Liu Y R, Liu X H. H filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities. Automatica, 2008, 44: 1268–1277

    Article  MATH  MathSciNet  Google Scholar 

  8. Yang F W, Li Y M, Liu X H. Robust error square constrained filter design for systems with non-Gaussian noises. IEEE Signal Process Lett, 2008, 15: 930–933

    Article  Google Scholar 

  9. Wei G L, Wang Z D, Shen B. Error-constrained filtering for a class of nonlinear time-varying delay systems with non-Gaussian noises. IEEE Trans Autom Control, 2010, 55: 2876–2882

    Article  MATH  MathSciNet  Google Scholar 

  10. Yue H, Wang H. Minimum entropy control of closed-loop tracking error for dynamic stochastic systems. IEEE Trans Autom Control, 2003, 48: 118–122

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo L, Wang H. Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises. IEEE Trans Autom Control, 2006, 51: 695–700

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhou J L, Zhou D H, Wang H, et al. Distribution function tracking filter design using hybrid characteristic functions. Automatica, 2010, 46: 101–109

    Article  MATH  MathSciNet  Google Scholar 

  13. Saridis G N. Entropy formulation of optimal and adaptive control. IEEE Trans Autom Control, 1988, 33: 713–721

    Article  MATH  MathSciNet  Google Scholar 

  14. Petersen I R, James M R, Dupuis P. Minimax optimal control of stochastc uncertain systems with relative entropy constraint. IEEE Trans Autom Control, 2000, 45: 398–412

    Article  MATH  Google Scholar 

  15. Zhang J H, Chu C C, Munoz J, et al. Minimum entropy based run-to-run control for semiconductor processes with uncertain metrology delay. J Process Control, 2009, 19: 1688–1697

    Article  Google Scholar 

  16. Yi Y, Guo L, Wang H. Adaptive statistic tracking control based on two steps neural networks with time delays. IEEE Trans Neural Netw, 2009, 20: 420–429

    Article  Google Scholar 

  17. Ding J L, Chai T Y, Wang H. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization. IEEE Trans Neural Netw, 2011, 22: 408–419

    Article  Google Scholar 

  18. Liu Y L, Wang H, Guo L. Observer-based feedback controller design for a class of stochastic systems with non-Gaussian variables. IEEE Trans Autom Control, 2015, 60: 1445–1450

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang H. Bounded Dynamic Stochastic Systems: Modeling and Control. London: Springer-Verlag, 2000

    Book  Google Scholar 

  20. Guo L, Wang H. Stochastic Distribution Control System Design: a Convex Optimization Approach. London: Springer-Verlag, 2010

    Book  MATH  Google Scholar 

  21. Papoulis A. Probability, Random Variables and Stochastic Processes. 3rd ed. New York: McGraw-Hill, 1991

    MATH  Google Scholar 

  22. Guo L, Yin L P, Wang H, et al. Entropy optimization filtering for fault isolation of nonlinear non-Gaussian stochastic systems. IEEE Trans Autom Control, 2009, 54: 804–810

    Article  MATH  MathSciNet  Google Scholar 

  23. Afshar P, Wang H, Chai T Y. An ILC-based adaptive control for general stochastic systems with strictly decreasing entropy. IEEE Trans Neural Netw, 2009, 20: 471–482

    Article  Google Scholar 

  24. Renyi A. A Diary on Information Theory. New York: Wiley, 1987

    MATH  Google Scholar 

  25. Ren M F, Zhang J H, Wang H. Minimized tracking error randomness control for nonlinear multivariate and non- Gaussian systems using the generalized density evolution equation. IEEE Trans Autom Control, 2014, 59: 2486–2490

    Article  MATH  MathSciNet  Google Scholar 

  26. Karny M. Toward fully probabilistic control design. Automatica, 1996, 32: 1719–1722

    Article  MATH  MathSciNet  Google Scholar 

  27. Yin L P, Zhang H Y, Guo L. Data driven output joint probability density function control for multivariate non-linear non-Gaussian systems. IET Control Theory Appl, 2015, 9: 2697–2703

    Article  MathSciNet  Google Scholar 

  28. Liu Y, Wang H, Hou C H. Sliding-mode control design for nonlinear systems using probability density function shaping. IEEE Trans Neural Netw Learn Syst, 2014, 25: 332–343

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61320106010, 61573019, 61627810). The authors would like to thank the anonymous reviewers for their constructive comments which helped to improve the quality and presentation of this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, B., Wang, Y. & Guo, L. Entropy optimization based filtering for non-Gaussian stochastic systems. Sci. China Inf. Sci. 60, 120203 (2017). https://doi.org/10.1007/s11432-017-9138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9138-6

Keywords