Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parameter estimates of Heston stochastic volatility model with MLE and consistent EKF algorithm

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Heston model is the most famous stochastic volatility model in finance. This paper considers the parameter estimation problem of Heston model with both known and unknown volatilities. First, parameters in equity process and volatility process of Heston model are estimated separately since there is no explicit solution for the likelihood function with all parameters. Second, the normal maximum likelihood estimation (NMLE) algorithm is proposed based on the Itô transformation of Heston model. The algorithm can reduce the estimate error compared with existing pseudo maximum likelihood estimation. Third, the NMLE algorithm and consistent extended Kalman filter (CEKF) algorithm are combined in the case of unknown volatilities. As an advantage, CEKF algorithm can apply an upper bound of the error covariance matrix to ensure the volatilities estimation errors to be well evaluated. Numerical simulations illustrate that the proposed NMLE algorithm works more efficiently than the existing pseudo MLE algorithm with known and unknown volatilities. Therefore, the upper bound of the error covariance is illustrated. Additionally, the proposed estimation method is applied to American stock market index S&P 500, and the result shows the utility and effectiveness of the NMLE-CEKF algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black F, Scholes M. The pricing of options and corporate liabilities. J Polit Econ, 1973, 81: 637–654

    Article  MathSciNet  MATH  Google Scholar 

  2. Hull J. Options, futures, and other derivatives. In: Asset Pricing. Berlin: Springer, 2009. 9–26

    Google Scholar 

  3. Gallant A R, Tauchen G. Which moments to match? Economet Theory, 1996, 12: 657–681

    Article  MathSciNet  Google Scholar 

  4. Fama E F. The behavior of stock-market prices. J Bus, 1965, 38: 34–105

    Article  Google Scholar 

  5. Cont R. Empirical properties of asset returns: stylized facts and statistical issues. Quant Financ, 2001, 1: 223–236

    Article  Google Scholar 

  6. Engle R F, Ng V K. Measuring and testing the impact of news on volatility. J Financ, 1993, 48: 1749–1778

    Article  Google Scholar 

  7. Engle R F, Patton A J. What good is a volatility model. Quant Financ, 2001, 1: 237–245

    Article  Google Scholar 

  8. Hull J, White A. The pricing of options on assets with stochastic volatilities. J Financ, 1987, 42: 281–300

    Article  MATH  Google Scholar 

  9. Wiggins J B. Option values under stochastic volatility: theory and empirical estimates. J Financ Econ, 1987, 19: 351–372

    Article  Google Scholar 

  10. Heston S L. A closed-form solution for options with stochastic volatilities with applications to bond and currency options. Rev Financ Stud, 1993, 6: 327–343

    Article  Google Scholar 

  11. Moodley N. The Heston model: a practical approach with matlab code. Johannesburg: University of the Witwatersrand, 2005

    Google Scholar 

  12. Dupire B. Pricing and hedging with smiles. In: Mathematics of Derivative Securities. Cambridge: Cambridge University Press, 1997. 103–111

    MATH  Google Scholar 

  13. Weron R, Wystup U. Heston’s Model and the Smile. Berlin: Springer, 2005. 161–181

    Google Scholar 

  14. Tang C Y, Chen S X. Parameter estimation and bias correction for diffusion processes. J Economet, 2009, 149: 65–81

    Article  MathSciNet  MATH  Google Scholar 

  15. Ait-Sahalia Y, Kimmel R. Maximum likelihood estimation of stochastic volatility models. J Financ Econ, 2007, 83: 413–452

    Article  Google Scholar 

  16. Ren P. Parametric estimation of the Heston model under the indirect observability framework. Dissertation for Ph.D. Degree. Houston: University of Houston, 2014

    Google Scholar 

  17. Jacquier E, Polson N G, Rossi P E. Bayesian analysis of stochastic volatility models. J Bus Econ Stat, 1994, 20: 69–87

    Article  MathSciNet  MATH  Google Scholar 

  18. Nelson D B. The time series behavior of stock market volatility and returns. Dissertation for Ph.D. Degree. Cambridge: MIT, 1988

    Google Scholar 

  19. Javaheri A, Lautier D, Galli A. Filtering in finance. Wilmott, 2003, 3: 67–83

    Article  Google Scholar 

  20. Aihara S I, Bagchi A, Saha S. On parameter estimation of stochastic volatility models from stock data using particle filter-application to AEX index. Int J Innov Comput Inf Control, 2009, 5: 17–27

    Google Scholar 

  21. Li J. An unscented Kalman smoother for volatility extraction: evidence from stock prices and options. Comput Stat Data Anal, 2013, 58: 15–26

    Article  MathSciNet  MATH  Google Scholar 

  22. Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters. J Am Stat Assoc, 1999, 94: 590–599

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu J, Wang Z D, Shen B, et al. Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements. Int J Control, 2013, 86: 650–663

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu J, Wang Z D, Liu S, et al. A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica, 2016, 64: 155–162

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang Y G, Xue W C, Huang Y, et al. The consistent extended Kalman filter. In: Proceedings of Chinese Control Conference (CCC), Chengdu, 2014. 6838–6843

    Google Scholar 

  26. He X K, Jing Y G, Xue W C, et al. Track correlation based on the quasi-consistent extended Kalman filter. In: Proceedings of the 34th Chinese Control Conference (CCC), Hangzhou, 2015. 2150–2155

    Google Scholar 

  27. Jiang Y G, Huang Y, Xue W C, et al. On designing consistent extended Kalman filter. J Syst Sci Complex, 2017, 30: 751–764

    Article  MathSciNet  MATH  Google Scholar 

  28. Shreve S E. Stochastic Calculus for Finance II: Continuous-time Models. New York: Springer Science & Business Media, 2004

    MATH  Google Scholar 

  29. Cox J C, Ingersoll J E, Ross S A. A theory of the term structure of interest rates. Econometrica, 1985, 53: 385–407

    Article  MathSciNet  MATH  Google Scholar 

  30. Nykvist J. Time consistency in option pricing models. Dissertation for Master Degree. Stockholm: Royal Institute of Technology, 2009

    Google Scholar 

  31. Hamilton J D. Time Series Analysis. Princeton: Princeton University Press, 1994

    MATH  Google Scholar 

  32. Stein E M, Stein J C. Stock price distributions with stochastic volatility: an analytic approach. Rev Financ Stud, 1991, 4: 727–752

    Article  Google Scholar 

  33. Kladívko K. Maximum likelihood estimation of the Cox-Ingersoll-Ross process: the matlab implementation. Technical Computing Prague, 2007. http://www2.humusoft.cz/www/papers/tcp07/kladivko.pdf

    Google Scholar 

  34. Simon D. Optimal State Estimation: Kalman, H1, and Nonlinear Approaches. Hoboken: John Wiley & Sons Inc, 2006. 395–407

    Book  Google Scholar 

  35. Andersen L B G. Simple and efficient simulation of the Heston stochastic volatility model. J Comput Financ, 2008, 11

    Google Scholar 

  36. Lord R, Koekkoek R, Dijk D V. A comparison of biased simulation schemes for stochastic volatility models. Quant Financ, 2010, 10: 177–194

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang C Y, Chen S X. Parameter estimation and bias correction for diffusion processes. J Economet, 2009, 149: 65–81

    Article  MathSciNet  MATH  Google Scholar 

  38. Exchange C B O. The CBOE volatility index-VIX. White Paper, 2009. www.cboe.com/micro/vix/vixwhite.pdf

    Google Scholar 

  39. Christensen B J, Prabhala N R. The relation between implied and realized volatility. J Financ Econ, 1998, 50: 125–150

    Article  Google Scholar 

  40. Zhu S H, Pykhtin M. A guide to modeling counterparty credit risk. Social Sci Elect Pub, 2008, 1: 16–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., He, X., Bao, Y. et al. Parameter estimates of Heston stochastic volatility model with MLE and consistent EKF algorithm. Sci. China Inf. Sci. 61, 042202 (2018). https://doi.org/10.1007/s11432-017-9215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9215-8

Keywords