Abstract
In this study, a discrete-time distributed algorithm is proposed for solving the dynamic economic dispatch problem with active power flow limits and transmission line loss. To avoid the communication burden and implement the algorithm in a favorably distributed manner, the splitting method is used to bypass the centralized updating of the algorithm’s parameters, which is unavoidable when implementing conventional Lagrangian methods. The use of a fixed step-size and distributed update enhances the applicability of the algorithm. The performance and effectiveness of the proposed distributed algorithm are verified via numerical studies on the IEEE 14-bus system.
Similar content being viewed by others
Abbreviations
- ai, bi, ci :
-
Distributed generator cost factor.
- P i,h :
-
Power out of the distributed generator i at time slot h.
- D j,h :
-
Load demand of the user i at time slot h.
- D j,h :
-
Renewable energy output of the user in node i at time slot h.
- \(P_i^M\) :
-
Maximum output of the distributed generator i.
- \(P_i^m\) :
-
Minimum output of the distributed generator i.
- \(D_i^M\) :
-
Maximum value of the load demand i.
- \(D_i^m\) :
-
Minimum value of the load demand i.
- \(P_i^R\) :
-
Ramp-rate constraint parameter of the generator i.
- T l :
-
Transmission line power flow limits of the line l.
- \(T_l^N\) :
-
Vector comprising the Tl, and \(T_l^N = \left({1/N} \right){T_l}\).
- B :
-
Admittance matrix of the power grid.
- W :
-
Reduced incidence matrix, and W ∈ ℝM × (N−1).
- E :
-
Matrix of distribution factors.
- E i :
-
Vector comprising the ith column elements of the distribution matrix E.
- L :
-
Laplacian matrix of the communication network, and L ∈ ℝN × N.
- L M :
-
Expanded Laplacian matrix, with LM = L ⨂ IM ∈ ℝMN × MN.
- ⨂:
-
Kronecker product.
- I M :
-
M × M unit matrix.
- H :
-
Total number of time slots involved in scheduling.
- M :
-
Number of transmission lines.
- N :
-
Number of the node, and N = NP + ND.
- N P :
-
Number of distributed generations.
- N R :
-
Number of renewable generations, and NR ⩽ ND.
- N D :
-
Number of users.
- \({{\cal N}_P}\) :
-
Set of the generator and \({{\cal N}_P} = \left[{1, \ldots ,{N_P}} \right]\).
- \({{\cal N}_R}\) :
-
Set of the generator and \({{\cal N}_R} = \left[{1, \ldots ,{N_R}} \right]\).
- \({{\cal N}_D}\) :
-
Set of the user and \({{\cal N}_D} = \left[{1, \ldots ,{N_D}} \right]\).
- \({\cal H}\) :
-
Index set of h, and \({\cal H} = \left\{{1, \ldots, H} \right\}\).
- μ i, h :
-
Lagrangian multiplier of the upper ramp-rate constraint.
- ν i, h :
-
Lagrangian multiplier of the lower ramp-rate constraint.
- θ i, h :
-
Lagrangian multiplier of the lower transmission line loss.
- γ i, h :
-
Lagrangian multiplier of the upper transmission line loss.
- \({\cal L}\) :
-
Lagrangian function of the converted primal problem.
- λ h :
-
Vector form of Lagrangian multiplier λi, h, and λ = [λ1, h, …, λN, h] ∈ ℝN.
- θ h :
-
Vector form of Lagrangian multiplier θi, h, and \({\theta _h} = \left[{\theta _{1,h}^T, \cdots \theta _{N,h}^T} \right] \in \mathbb{R}{^{M\,N}}\).
- ξ h :
-
Vector form of Lagrangian multiplier ξi, h, and \({\xi _h} = \left[{\xi _{1,h}^T, \cdots \xi _{N,h}^T} \right] \in \mathbb{R}{^{M\,N}}\).
- γ h :
-
Vector form of Lagrangian multiplier γi, h, and \(\gamma = \left[{\gamma _{1,}^T, \cdots \gamma _{N,h}^T} \right] \in \mathbb{R}{^{M\,N}}\).
- ζ h :
-
Vector form of Lagrangian multiplier ζi, h, and \({\zeta _h} = \left[{\zeta _{1,}^{\rm{T}}, \cdots \zeta _{N,h}^{\rm{T}}} \right] \in \mathbb{R}{^{M\,N}}\).
- β i :
-
Transmission line loss coefficient.
- NΩ(Pi, h):
-
Normal cone of the constraint set of the generator node i. \({N_{\rm{\Omega}}}\left({{P_{i,h}}} \right) = \left\{{{z_i}\left| {{z_i}\left({{P_i} - P_i^\prime} \right) \leqslant 0,\forall {P_i},P_i^\prime \in {{\rm{\Omega}}_{{P_{i,h}}}}} \right.} \right\}\).
- NΩ(Di, h):
-
Normal cone of the constraint set of the user i. \({N_{\rm{\Omega}}}\left({{D_{i,h}}} \right) = \left\{{{z_i}\left| {{z_i}} \right.\left({{D_i} - D_i^\prime} \right) \leqslant 0,\forall {D_i},D_i^\prime \in \,{{\rm{\Omega}}_{{D_{i,h}}}}} \right\}\).
- ρ i, h :
-
Node injection active power of node i at time slot h. \(\forall i \in {{\cal N}_D},{\rho _{i,h}} = {P_{i,h}} - {\beta _i}P_{i,h}^2;\,\forall i \in {{\cal N}_D},{\rho _{i,h}} = {R_{i,h}} - {D_{i,h}}\).
- ρ h :
-
The vector form of node injection active power, and ρh = [ρ1 h, …, ρN, h].
- ο:
-
Hadamard product.
- υi, ωi :
-
Users’ utility function parameters.
- λ i, h :
-
Lagrangian multiplier of the supply and demand balance constraints.
- φ i, h :
-
Lagrangian multiplier of the consensus constraint Lλh = 0.
- φ h :
-
The vector form of Lagrangian multiplier φi, h and φh = [φ1, h,…, φN, h].
- ξ i, h :
-
Lagrangian multiplier of the consensus constraint LMθh = 0.
- ζ i, h :
-
Lagrangian multiplier of the consensus constraint LMγh = 0.
- Π :
-
Projection operator, and ΠΩ (x) = min‖x − y‖, ∀y ∈ Ω.
- \({{\rm{\Omega}}_{{P_{i,h}}}}\) :
-
Feasible set of \({P_{i,h}},\,{{\rm{\Omega}}_{{P_{i,h}}}} = \left\{{{P_{i,h}}\left| {P_i^m} \right. \leqslant {P_{i,h}} \le P_i^M} \right\}\).
- \({{\rm{\Omega}}_{{D_{i,h}}}}\) :
-
Feasible set of \({D_{i,h}},\,{{\rm{\Omega}}_{{D_{i,h}}}} = \left\{{{D_h}\left| {D_i^m} \right. \leqslant {D_{i,h}} \le D_i^M} \right\}\).
- ε P :
-
Pre-set algorithm convergence tolerance threshold.
- α :
-
Algorithm iteration step size.
- \(\mathbb{R}_ + ^N\) :
-
N-dimension positive space.
- \({{\cal N}_i}\) :
-
Neighbor set of the agent i.
References
Yu W W, Li C J, Yu X H, et al. Economic power dispatch in smart grids: a framework for distributed optimization and consensus dynamics. Sci China Inf Sci, 2018, 61: 012204
Qian Y W, Zhang C, Xu Z W, et al. A reliable opportunistic routing for smart grid with in-home power line communication networks. Sci China Inf Sci, 2016, 59: 122305
Tang C B, Li X, Wang Z, et al. Cooperation and distributed optimization for the unreliable wireless game with indirect reciprocity. Sci China Inf Sci, 2017, 60: 110205
Wang Y H, Lin P, Hong Y G. Distributed regression estimation with incomplete data in multi-agent networks. Sci China Inf Sci, 2018, 61: 092202
Li C J, Yu X H, Huang T W, et al. Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch. IEEE Trans Neural Netw Learn Syst, 2018, 29: 2407–2418
Bai L, Ye M J, Sun C, et al. Distributed economic dispatch control via saddle point dynamics and consensus algorithms. IEEE Trans Contr Syst Technol, 2019, 27: 898–905
He X, Ho D W C, Huang T W, et al. Second-order continuous-time algorithms for economic power dispatch in smart grids. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1482–1492
He X, Yu J Z, Huang T W, et al. Distributed power management for dynamic economic dispatch in the multimicrogrids environment. IEEE Trans Contr Syst Technol, 2019, 27: 1651–1658
Zou D X, Li S, Kong X Y, et al. Solving the dynamic economic dispatch by a memory-based global differential evolution and a repair technique of constraint handling. Energy, 2018, 147: 59–80
Jin X L, Mu Y F, Jia H J, et al. Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system. Appl Energy, 2017, 194: 386–398
Qu B Y, Zhu Y S, Jiao Y C, et al. A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems. Swarm Evolary Comput, 2018, 38: 1–11
Xu Y L, Zhang W, Liu W X. Distributed dynamic programming-based approach for economic dispatch in smart grids. IEEE Trans Ind Inf, 2015, 11: 166–175
Shuai H, Fang J K, Ai X M, et al. Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming. IEEE Trans Smart Grid, 2019, 10: 2440–2452
Papavasiliou A, Mou Y, Cambier L, et al. Application of stochastic dual dynamic programming to the real-time dispatch of storage under renewable supply uncertainty. IEEE Trans Sustain Energy, 2018, 9: 547–558
Li C J, Yu X H, Yu W W, et al. Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Trans Ind Inf, 2016, 12: 1775–1785
Liu Z W, Yu X, Guan Z H, et al. Pulse-modulated intermittent control in consensus of multiagent systems. IEEE Trans Syst Man Cybern Syst, 2017, 47: 783–793
Rockafellar R T, Wets R J B. Variational Analysis. New York: Springer Science & Business Media, 2009
Singh H, Hao S, Papalexopoulos A. Transmission congestion management in competitive electricity markets. IEEE Trans Power Syst, 1998, 13: 672–680
Zhao C C, He J P, Cheng P, et al. Consensus-based energy management in smart grid with transmission losses and directed communication. IEEE Trans Smart Grid, 2017, 8: 2049–2061
Yi P, Pavel L. A distributed primal-dual algorithm for computation of generalized Nash equilibria with shared affine coupling constraints via operator splitting methods. 2017. ArXiv: 1703.05388
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, K., Fu, Z., Xu, Q. et al. Distributed fixed step-size algorithm for dynamic economic dispatch with power flow limits. Sci. China Inf. Sci. 64, 112202 (2021). https://doi.org/10.1007/s11432-019-2638-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-019-2638-2