Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Face-sketch learning with human sketch-drawing order enforcement

  • Letter
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wang X G, Tang X O. Face photo-sketch synthesis and recognition. IEEE Trans Pattern Anal Mach Intell, 2009, 31: 1955–1967

    Article  MathSciNet  Google Scholar 

  2. Zhang M, Wang N, Li Y, et al. Neural probabilistic graphical model for face sketch synthesis. IEEE Trans Neural Netw Learn Syst, 2019. doi: https://doi.org/10.1109/TNNLS.2019.2933590

  3. Wang N, Gao X, Sun L, et al. Anchored neighborhood index for face sketch synthesis. IEEE Trans Circ Syst Video Technol, 2018, 28: 2154–2163

    Article  Google Scholar 

  4. Zhang W, Wang X, Tang X. Coupled information-theoretic encoding for face photo-sketch recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011. 513–520

  5. Khaligh-Razavi S M, Kriegeskorte N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput Biol, 2014, 10: e1003915

    Article  Google Scholar 

  6. Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Proceedings of Annual Conference on Neural Information Processing Systems (NIPS), 2014. 2672–2680

  7. Isola P, Zhu J, Zhou T, et al. Image-to-image translation with conditional adversarial networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 5967–5976

  8. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention, 2015. 234–241

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant Nos. 2017YFB1402105, 2019YFC1521100), National Natural Science Foundation of China (Grant Nos. U1805264, 61573359, 61672103, 61473276, 61402040), and Natural Science Foundation of Beijing (Grant No. L182052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Deng or Qiulei Dong.

Supplementary File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Jin, L., Weng, L. et al. Face-sketch learning with human sketch-drawing order enforcement. Sci. China Inf. Sci. 63, 219103 (2020). https://doi.org/10.1007/s11432-019-2890-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2890-8