Abstract
The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122–130
Fettweis G P. The tactile Internet: applications and challenges. IEEE Veh Technol Mag, 2014, 9: 64–70
Saad W, Bennis M, Chen M. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw, 2020, 34: 134–142
Zong B Q, Fan C, Wang X Y, et al. 6G technologies: key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh Technol Mag, 2019, 14: 18–27
Dang S, Amin O, Shihada B, et al. From a human-centric perspective: what might 6G be. https://arxiv.org/pdf/1906.00741.pdf
ITU-R M.2083 report. IMT vision–framework and overall objectives of the future development of IMT for 2020 and beyond. https://www.itu.int/rec/R-REC-M.2083-0-201509-I/en
Chen S Z, Liang Y C, Sun S H, et al. Vision, requirements, and technology trend of 6G: how to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel Commun, 2020, 27: 218–228
Zhang Z Q, Xiao Y, Ma Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh Technol Mag, 2019, 14: 28–41
Yang P, Xiao Y, Xiao M, et al. 6G wireless communications: vision and potential techniques. IEEE Netw, 2019, 33: 70–75
Zhang L, Liang Y C, Niyato D. 6G visions: mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun, 2019, 16: 1–14
Marco G, Michele P, Macro M, et al. Towards 6G networks: use cases and technologies. https://arxiv.org/pdf/1903.12216.pdf
You X H, Yin H, Wu H Q. 6G and wide area Internet (in Chinese). Chinese J Int Things, 2020, 4: 12–18
Huawei. Cloud X: CG Cloud VR Technical Specifications (Revised Draft v1.0). 2018. https://www-file.huawei.com/-/media/corporate/pdf/white%20paper/cg-cloud-vr-technical-specifications.pdf?1a=en-us
Huawei. Cloud XR Medical Platforms White Paper. 2018. https://www.huawei.com/minisite/static/cloud-xr-medical-platform-en.pdf
Huawei. Cloud VR+2B Scenario White Paper, https://www-file.huawei.eom/-/media/corporate/pdf/ilab/2019/cloud_vr_2b_scenario_white_paper_en.pdf
Greengard S. Virtual Reality. Cambridge: The MIT Press, 2019
GSMA. Cloud AR/VR white paper. 2019. https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/
Stengel M, Grogorick S, Eisemann M, et al. Adaptive image-space sampling for gaze-contingent real-time rendering. Comput Graphics Forum, 2016, 35: 129–139
Hagiwara Y, Mizuchi Y, Choi Y, et al. Cloud VR system with immersive interfaces to collect human gaze-controls and interpersonal-behaviors. In: Proceedings of the 2014 IEEE/SICE International Symposium on System Integration, Tokyo, 2014. 169–174
Kaplanyan A S, Sochenov A, Leimkühler T, et al. DeepFovea: neural reconstruction for foveated rendering and video compression using learned statistics of natural videos. ACM Trans Graph, 2019, 38: 1–13
Liu Y, Dey S, Lu Y. Enhancing video encoding for cloud gaming using rendering information. IEEE Trans Circ Syst Video Technol, 2015, 25: 1960–1974
Xu L F, Guo X, Lu Y, et al. A low latency cloud gaming system using edge preserved image homography. In: Proceedings of 2014 IEEE International Conference on Multimedia and Expo, Chengdu, 2014. 1–6
Lai Z Q, Hu Y C, Cui Y, et al. Furion: engineering high-quality immersive virtual reality on today’s mobile devices. IEEE Trans Mobile Comput, 2020, 19: 1586–1602
Wang P C, Ellis A I, Hart J C, et al. Optimizing next-generation cloud gaming platforms with planar map streaming and distributed rendering. In: Proceedings of 2017 15th Annual Workshop on Network and Systems Support for Games, Taipei, 2017. 1–6
Kagermann H, Wahlster W, Helbig J. Securing the future of German manufacturing industry: Recommendations for implementing the strategic initiative industries 4.0. Final report of the Industries 4.0 Working Group. https://www.mendeley.com/catalogue/52a309ad-c197-3f0e-ac43-630a5295c48e/
5G ACIA. 5G for connected industries and automation. White Paper, 2nd ed. 2019. https://www.5g-acia.org/publications/5g-for-connected-industries-and-automation-white-paper/
3rd Generation Partnership Project (3GPP). Service requirements for cyber-physical control applications in vertical domains. TS 22.104. https://www.3gpp.org/ftp/Specs/archive/22_series/22.104
He J H, Tang Z Y, Fu X M, et al. Cooperative connected autonomous vehicles (CAV): research, applications and challenges. In: Proceedings of IEEE 27th International Conference on Network Protocols, Chicago, 2019. 1–6
Chen S Z, Hu J L, Shi Y, et al. A vision of C-V2X: technologies, field testing, and challenges with chinese development. IEEE Internet Things J, 2020, 7: 3872–3881
Naik G, Choudhury B, Park J M. IEEE 802.11bd & 5G NR V2X: evolution of radio access technologies for V2X communications. IEEE Access, 2019, 7: 70169–70184
Lien S Y, Deng D J, Lin C C, et al. 3GPP NR sidelink transmissions toward 5G V2X. IEEE Access, 2020, 8: 35368–35382
Guo C T, Liang L, Li G Y. Resource allocation for low-latency vehicular communications: an effective capacity perspective. IEEE J Sel Areas Commun, 2019, 37: 905–917
Pateromichelakis E, Zhou C, Keshavamurthy P, et al. End-to-end QoS optimization for V2X service localization. In: Proceedings of 2019 IEEE Global Communications Conference, Waikoloa, 2019. 1–6
Huang W L, Wang K F, Lv Y S, et al. Autonomous vehicles testing methods review. In: Proceedings of IEEE International Conference on Intelligent Transportation Systems, Rio de Janeiro, 2016. 163–168
Gao L, Li Y, Misener J, et al. C-V2X based basic safety related its spectrum requirement analysis. In: Proceedings of 2017 IEEE 86th Vehicular Technology Conference, Toronto, 2017. 1–5
6G Flagship. Key drivers and research challenges for 6G ubiquitous wireless intelligence (white paper). University of Oulu, 2019. http://jultika.oulu.fi/files/isbn9789526223544.pdf
China Electronic Information Industry Development Research Institute. 6G concept and vision white paper (in Chinese). 2019. http://www.ccidwise.com/uploads/soft/200311/1-200311133959.pdf
Santos J, Wauters T, Volckaert B, et al. Fog computing: enabling the management and orchestration of smart city applications in 5G networks. Entropy. 2018, 20: 1–26
Yole D. Medical wearables: market and technology trends 2019. https://s3.i-micronews.com/uploads/2019/03/YD19008-Medical-Wearables-2019-Yole-Sample-2.pdf
Fettweis G, Matus E, Wittig R, et al. 5G-and-beyond scalable machines. In: Proceedings of IFIP/IEEE International Conference on Very Large Scale Integration, Cuzco, 2019. 105–109
Fettweis G, Hassler M, Wittig R, et al. A low-power scalable signal processing chip platform for 5G and beyond-kachel. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2020. 896–900
Ankarali Z E, Pekoz B, Arslan H. Flexible radio access beyond 5G: a future projection on waveform, numerology, and frame design principles. IEEE Access, 2017, 5: 18295–18309
Raviteja P, Phan K T, Hong Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans Wireless Commun, 2018, 17: 6501–6515
Hadani R, Rakib S, Kons S, et al. Orthogonal time frequency space modulation. https://arxiv.org/pdf/1808.00519.pdf
Raviteja P, Phan K T, Hong Y. Embedded pilot-aided channel estimation for OTFS in delay-doppler channels. IEEE Trans Veh Technol, 2019, 68: 4906–4917
Murmann B. ADC performance survey 1997–2020. http://web.stanford.edu/~murmann/adcsurvey.html
Fettweis G, Dörpinghaus M, Bender S, et al. Zero crossing modulation for communication with temporally oversampled 1-bit quantization. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2019. 207–214
Landau L T N, Dorpinghaus M, de Lamare R C, et al. Achievable rate with 1-bit quantization and oversampling using continuous phase modulation-based sequences. IEEE Trans Wirel Commun, 2018, 17: 7080–7095
Vaezi M, Ding Z G, Poor H V. Multiple Access Techniques for 5G Wireless Networks and Beyond. Berlin: Springer, 2019
Li Y N, Wang W J, Wang J H, et al. Fast-convolution multicarrier based frequency division multiple access. Sci China Inf Sci, 2019, 62: 080301
Wyner A D. Shannon-theoretic approach to a Gaussian cellular multiple-access channel. IEEE Trans Inform Theor, 1994, 40: 1713–1727
Ding Z G, Lei X F, Karagiannidis G K, et al. A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J Sel Areas Commun, 2017, 35: 2181–2195
Saito Y, Benjebbour A, Kishiyama Y, et al. System level performance evaluation of downlink non-orthogonal multiple access (NOMA). In: Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, London, 2013. 611–615
3rd Generation Partnership Project (3GPP). Study on downlink multiuser superposition transmission for LTE. TR 36.859. https://www.3gpp.org/ftp/Specs/archive/36_series/36.859
3rd Generation Partnership Project (3GPP). Technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); physical channels and modulation. TR 38.211. https://www.3gpp.org/ftp/Specs/archive/38_series/38.211
3rd Generation Partnership Project (3GPP). Study on Non-Orthogonal Multiple Access (NOMA) for NR. TR 38.812. https://www.3gpp.org/ftp/Specs/archive/38_series/38.812
Nikopour H, Baligh H. Sparse code multiple access. In: Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications, London, 2013. 332–336
Ding Z G, Fan P Z, Poor H V. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans Veh Technol, 2016, 65: 6010–6023
Augustine R M, Chockalingam A. Interleaved time-frequency multiple access using OTFS modulation. In: Proceedings of IEEE Vehicular Technology Conference, Honolulu, 2019. 1–5
Ding Z G, Schober R, Fan P Z, et al. OTFS-NOMA: an efficient approach for exploiting heterogenous user mobility profiles. IEEE Trans Commun, 2019, 67: 7950–7965
Zhu L P, Xiao Z Y, Xia X G, et al. Millimeter-wave communications with non-orthogonal multiple access for B5G/6G. IEEE Access, 2019, 7: 116123–116132
Mao Y Y, You C S, Zhang J, et al. A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tut, 2017, 19: 2322–2358
Ding Z G, Fan P Z, Poor H V. Impact of non-orthogonal multiple access on the offloading of mobile edge computing. IEEE Trans Commun, 2019, 67: 375–390
Zhang H J, Qiu Y, Long K P, et al. Resource allocation in NOMA-based fog radio access networks. IEEE Wirel Commun, 2018, 25: 110–115
Schaich F, Wild T, Chen Y J. Waveform contenders for 5G-suitability for short packet and low latency transmissions. In: Proceedings of IEEE Vehicular Technology Conference Spring, Seoul, 2014. 1–5
Ding Z G, Schober R, Fan P Z, et al. Simple semi-grant-free transmission strategies assisted by non-orthogonal multiple access. IEEE Trans Commun, 2019, 67: 4464–4478
Shannon C E. A mathematical theory of communication. Bell Syst Tech J, 1948, 5: 379–423
Seidl M, Schenk A, Stierstorfer C, et al. Polar-coded modulation. IEEE Trans Commun, 2013, 61: 4108–4119
Shin D M, Lim S C, Yang K. Mapping selection and code construction for 2m-ary polar-coded modulation. IEEE Commun Lett, 2012, 16: 905–908
Lau F, Tam W M. Reducing the bit-mapping search space of a bit-interleaved polar-coded modulation system. In: Proceedings of International Conference on Advanced Technologies for Communications, Quy Nhon, 2017. 198–203
Mondelli M, Hassani S H, Urbanke R. Construction of polar codes with sublinear complexity. In: Proceedings of IEEE International Symposium on Information Theory, Aachen, 2017. 1853–1857
Schrch C. A partial order for the synthesized channels of a polar code. In: Proceedings of IEEE International Symposium on Information Theory, Barcelona, 2016. 220–224
Mondelli M, Hassani S H, Urbanke R L. Unified scaling of polar codes: error exponent, scaling exponent, moderate deviations, and error floors. IEEE Trans Inform Theor, 2016, 62: 6698–6712
Tal I, Vardy A. List decoding of polar codes. IEEE Trans Inform Theor, 2015, 61: 2213–2226
Mahdavifar H, El-Khamy M, Lee J, et al. Polar coding for bit-interleaved coded modulation. IEEE Trans Veh Technol, 2016, 65: 3115–3127
Hanzo L, Liew T, Yeap B, et al. Turbo Coding, Turbo Equalisation and Space-time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels. Hoboken: John Wiley & Sons, 2011
Hanif M, Ardakani M. Polar codes: bounds on Bhattacharyya parameters and their applications. IEEE Trans Commun, 2018, 66: 5927–5937
Trifonov P. Design of polar codes for Rayleigh fading channel. In: Proceedings of International Symposium on Wireless Communication Systems, Brussels, 2015. 331–335
Bravo-Santos A. Polar codes for the Rayleigh fading channel. IEEE Commun Lett, 2013, 17: 2352–2355
Liu S Y, Hong Y, Viterbo E. Polar codes for block fading channels. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops, San Francisco, 2017. 1–6
Gabry F, Bioglio V, Land I, et al. Multi-kernel construction of polar codes. In: Proceedings of IEEE International Conference on Communications Workshops, Paris, 2017. 761–765
Benammar M, Bioglio V, Gabry F, et al. Multi-kernel polar codes: proof of polarization and error exponents. In: Proceedings of IEEE Information Theory Workshop, Kaohsiung, 2017. 101–105
Zuo X, Perez-Andrade I, Maunder R G, et al. Improving the tolerance of stochastic LDPC decoders to overclocking-induced timing errors: a tutorial and a design example. IEEE Access, 2016, 4: 1607–1629
Perez-Andrade I, Zhong S, Maunder R G, et al. Stochastic computing improves the timing-error tolerance and latency of turbo decoders: design guidelines and tradeoffs. IEEE Access, 2016, 4: 1008–1038
Xu Z L, Niu K. Successive cancellation decoders of polar codes based on stochastic computation. In: Proceedings of IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication, Washington, 2014. 908–912
Yuan B, Parhi K K. Successive cancellation decoding of polar codes using stochastic computing. In: Proceedings of IEEE International Symposium on Circuits and Systems, Lisbon, 2015. 3040–3043
Liang X, Zhang C, Xu M H, et al. Efficient stochastic list successive cancellation decoder for polar codes. In: Proceedings of 28th IEEE International System-on-Chip Conference, Beijing, 2015. 421–426
Yuan B, Parhi K K. Belief propagation decoding of polar codes using stochastic computing. In: Proceedings of IEEE International Symposium on Circuits and Systems, Montreal, 2016. 157–160
Xu M H, Liang X, Yuan B, et al. Stochastic belief propagation polar decoding with efficient re-randomization. IEEE Trans Veh Technol, 2020, 69: 6771–6776
Han K N, Wang J C, Gross W J, et al. Stochastic bit-wise iterative decoding of polar codes. IEEE Trans Signal Process, 2019, 67: 1138–1151
Wozencraft J M. Sequential Decoding for Reliable Communication. Technical Report 325. 1957
Wozencraft J, Reiffen B. Sequential Decoding. Cambridge: MIT Press, 1961
Hanzo L, Maunder R G, Wang J, et al. Near-Capacity Variable-Length Coding: Regular and Exit-Chart-Aided Irregular Designs. Hoboken: John Wiley & Sons, 2010
Hamming R W. Error detecting and error correcting codes. Bell Syst Tech J, 1950, 29: 147–160
Benedetto S, Divsalar D, Montorsi G, et al. Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding. IEEE Trans Inform Theor, 1998, 44: 909–926
Divsalar D, Pollara F. Hybrid concatenated codes and iterative decoding. In: Proceedings of IEEE International Symposium on Information Theory, ULM, 1997. 42–130
Moher M. An iterative multiuser decoder for near-capacity communications. IEEE Trans Commun, 1998, 46: 870–880
Reed M C, Schlegel C B, Alexander P D, et al. Iterative multiuser detection for CDMA with FEC: near-single-user performance. IEEE Trans Commun, 1998, 46: 1693–1699
Bauer R, Hagenauer J. On variable length codes for iterative source/channel decoding. In: Proceedings of IEEE Data Compression Conference, Snowbird, 2001. 273–282
Thobaben R, Kliewer J. Robust decoding of variable-length encoded Markov sources using a three-dimensional trellis. IEEE Commun Lett, 2003, 7: 320–322
Thobaben R, Kliewer J. Low complexity iterative joint source-channel decoding for variable-length encoded Markov sources. IEEE Trans Commun, 2005, 53: 2054–2064
Richardson T, Urbanke R. The capacity of LDPC codes under message passing decoding. IEEE Trans Inf Theory, 2001, 47: 595–618
Benedetto S, Divsalar D, Montorsi G, et al. Analysis, design, and iterative decoding of double serially concatenated codes with interleavers. IEEE J Sel Areas Commun, 1998, 16: 231–244
Tüchler M. Convergence prediction for iterative decoding of threefold concatenated systems. In: Proceedings of IEEE Global Telecommunications Conference, Taipei, 2002. 1358–1362
Brannstrom F, Rasmussen L K, Grant A J. Optimal scheduling for multiple serially concatenated codes. In: Proceedings of International Symposium on Turbo Codes and Related Topics, Brest, 2003. 383–386
Brannstrom F, Rasmussen L K, Grant A J. Convergence analysis and optimal scheduling for multiple concatenated codes. IEEE Trans Inform Theor, 2005, 51: 3354–3364
Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inform Theor, 1967, 13: 260–269
Bahl L, Cocke J, Jelinek F, et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.). IEEE Trans Inf Theory, 1974, 20: 284–287
Xu C, Sugiura S, Ng S X, et al. Two decades of MIMO design tradeoffs and reduced-complexity MIMO detection in near-capacity systems. IEEE Access, 2017, 5: 18564–18632
Hanzo L, Alamri O, El-Hajjar M, et al. Near-capacity Multi-functional MIMO Systems: Sphere-packing, Iterative Detection and Cooperation. Hoboken: John Wiley & Sons, 2009
Brink S T. Convergence of iterative decoding. Electron Lett, 1999, 35: 806–808
Ashikhmin A, Kramer G, Brink S T. Extrinsic information transfer functions: model and erasure channel properties. IEEE Trans Inform Theor, 2004, 50: 2657–2673
Chen Y, Gao X Q, Xia X-G, et al. Robust MMSE precoding for massive MIMO transmission with hardware mismatch. Sci China Inf Sci, 2018, 61: 042303
Ngo H Q, Ashikhmin A, Yang H, et al. Cell-free massive MIMO: uniformly great service for everyone. In: Proceedings of IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications, Stockholm, 2015. 201–205
Wang D M, Zhao Z L, Huang Y Q, et al. Large-scale multi-user distributed antenna system for 5G wireless communications. In: Proceedings of IEEE 81st Vehicular Technology Conference Spring, Glasgow, 2015. 1–5
You X H, Wang D M, Wang J Z. Distributed MIMO and Cell-free Mobile Communication (in Chinese). Beijing: Science Press, 2019
Ngo H Q, Ashikhmin A, Yang H, et al. Cell-free massive MIMO versus small cells. IEEE Trans Wirel Commun, 2017, 16: 1834–1850
Feng Y, Wang M H, Wang D M, et al. Low complexity iterative detection for a large-scale distributed MIMO prototyping system. In: Proceedings of IEEE International Conference on Communications, Shanghai, 2019. 1–6
Chen Z, Bjornson E. Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry. IEEE Trans Commun, 2018, 66: 5205–5219
Hoydis J, Brinkz S, Debbah M. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? IEEE J Sel Areas Commun, 2013, 31: 160–171
Interdonato G, Frenger P, Larsson E G. Scalability aspects of cell-free massive MIMO. In: Proceedings of IEEE International Conference on Communications, Shanghai, 2019. 1–6
Liang Y C, Chen K C, Li G Y, et al. Cognitive radio networking and communications: an overview. IEEE Trans Veh Technol, 2011, 60: 3386–3407
Lien S Y, Chen K C, Liang Y C, et al. Cognitive radio resource management for future cellular networks. IEEE Wirel Commun, 2014, 21: 70–79
Liang Y C. Dynamic Spectrum Management: From Cognitive Radio to Blockchain and Artificial Intelligence. Berlin: Springer, 2020
Zhang L, Xiao M, Wu G, et al. A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wirel Commun, 2017, 24: 44–51
Yin R, Yu G D, Maaref A, et al. LBT-based adaptive channel access for LTE-U systems. IEEE Trans Wirel Commun, 2016, 15: 6585–6597
Han S Y, Liang Y C, Chen Q, et al. Licensed-assisted access for LTE in unlicensed spectrum: a MAC protocol design. IEEE J Sel Areas Commun, 2016, 34: 2550–2561
Tan J J, Zhang L, Liang Y C, et al. Intelligent sharing for LTE and WiFi systems in unlicensed bands: a deep reinforcement learning approach. IEEE Trans Commun, 2020, 68: 2793–2808
Yang G, Zhang Q Q, Liang Y C. Cooperative ambient backscatter communications for green Internet-of-Things. IEEE Internet Things J, 2018, 5: 1116–1130
Zhang Q Q, Guo H Y, Liang Y C, et al. Constellation learning-based signal detection for ambient backscatter communication systems. IEEE J Sel Areas Commun, 2019, 37: 452–463
Long R Z, Liang Y C, Guo H Y, et al. Symbiotic radio: a new communication paradigm for passive Internet of Things. IEEE Internet Things J, 2020, 7: 1350–1363
Liu W C, Liang Y C, Li Y H, et al. Backscatter multiplicative multiple-access systems: fundamental limits and practical design. IEEE Trans Wirel Commun, 2018, 17: 5713–5728
Zhang Q Q, Zhang L, Liang Y C, et al. Backscatter-NOMA: a symbiotic system of cellular and Internet-of-things networks. IEEE Access, 2019, 7: 20000–20013
Zhang Q Q, Liang Y C, Poor H V. Intelligent user association for symbiotic radio networks using deep reinforcement learning. 2020. ArXiv: 1905.04041
Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System. Technical Report. 2008
Wood G. Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, 2014, 151: 1–32
Ling X T, Wang J H, Bouchoucha T, et al. Blockchain radio access network (B-RAN): towards decentralized secure radio access paradigm. IEEE Access, 2017, 7: 9714–9723
Le Y W, Ling X T, Wang J H, et al. Prototype design and test of blockchain radio access network. In: Proceedings of IEEE International Conference on Communications Workshops, Shanghai, 2019. 1–6
Weiss M B H, Werbach K, Sicker D C, et al. On the application of blockchains to spectrum management. IEEE Trans Cogn Commun Netw, 2019, 5: 193–205
Yang R Z, Yu F R, Si P B, et al. Integrated blockchain and edge computing systems: a survey, some research issues and challenges. IEEE Commun Surv Tut, 2019, 21: 1508–1532
Ling X T, Le Y W, Wang J H, et al. Hash access: trustworthy grant-free IoT access enabled by blockchain radio access networks. IEEE Netw, 2020, 34: 54–61
Ferrag M A, Derdour M, Mukherjee M, et al. Blockchain technologies for the Internet of Things: research issues and challenges. IEEE Internet Things J, 2019, 6: 2188–2204
Guan Z T, Si G L, Zhang X S, et al. Privacy-preserving and efficient aggregation based on blockchain for power grid communications in smart communities. IEEE Commun Mag, 2018, 56: 82–88
Ali N A, Taha A E M, Barka E. Integrating blockchain and IoT/ITS for safer roads. IEEE Netw, 2020, 34: 32–37
Backman J, Yrjöolöa S, Valtanen K, et al. Blockchain network slice broker in 5G: slice leasing in factory of the future use case. In: Proceedings of Internet of Things Business Models, Users, and Networks, Copenhagen, 2017. 1–8
Dai Y Y, Xu D, Maharjan S, et al. Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw, 2019, 33: 10–17
Ling X T, Wang J H, Le Y W, et al. Blockchain radio access network beyond 5G. IEEE Wirel Commun, 2020. doi: https://doi.org/10.1109/MWC.001.2000172
Ling X T, Le Y W, Wang J H, et al. Practical modeling and analysis of blockchain radio access network. https://arxiv.org/pdf/1911.12537.pdf
Kuo P H, Mourad A, Ahn J. Potential applicability of distributed ledger to wireless networking technologies. IEEE Wirel Commun, 2018, 25: 4–6
Bagaria V, Kannan S, Tse D, et al. Deconstructing the blockchain to approach physical limits. https://arxiv.org/pdf/1810.08092.pdf
Garay J, Kiayias A, Leonardos N. The bitcoin backbone protocol: Analysis and applications. In: Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, 2015. 281–310
Nagatsuma T, Horiguchi S, Minamikata Y, et al. Terahertz wireless communications based on photonics technologies. Opt Express, 2013, 21: 23736–23747
Seeds A J, Shams H, Fice M J, et al. TeraHertz photonics for wireless communications. J Lightwave Technol, 2015, 33: 579–587
Huang K C, Whag Z. Terahertz terabit wireless communication. IEEE Microw Mag, 2011, 12: 108–116
Nagatsuma T, Kato K, Hesler J. Enabling technologies for realtime 50-Gbit/s wireless transmission at 300 GHz. In: Proceedings of Annual International Conference on Nanoscale Computing and Communication, Boston, 2015. 1–5
Li X Y, Yu J J, Xiao J N, et al. Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band. IEEE Photonic Technol Lett, 2014, 26: 1948–1951
Huang H T, Liang W L, Lin C T, et al. 100-GHz DD-OFDM-RoF system over 150-km fiber transmission employing pilotaided phase noise suppression and bit-loading algorithm. Opt Express, 2014, 22: 3938–3943
Song H J, Ajito K, Muramoto Y, et al. Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW. IEEE Microw Wirel Compon Lett, 2012, 22: 363–365
Martiskainen M, Coburn J. The role of information and communication technologies (ICTs) in household energy consumption-prospects for the UK. Energy Effic, 2011, 4: 209–221
Carpintero G, Balakier K, Yang Z, et al. Microwave photonic integrated circuits for millimeter-wave wireless communications. J Lightwave Technol, 2014, 32: 3495–3501
Eriksson K, Darwazeh I, Zirath H. InP DHBT distributed amplifiers with up to 235-GHz bandwidth. IEEE Trans Microw Theor Techn, 2015, 63: 1334–1341
Abbas A, Karabiyik M, Pala N. Graphene-based field-effect transistor structures for terahertz applications. In: Proceedings of SPIE, 2012. 8363
Tong J Y, Muthee M, Chen S Y, et al. Antenna enhanced graphene THz emitter and detector. Nano Lett, 2015, 15: 5295–5301
3rd Generation Partnership Project (3GPP). Study on physical layer enhancements for NR ultra-reliable and low latency case. TR 38.824. https://www.3gpp.org/ftp/Specs/archive/38_series/38.824
Polyanskiy Y, Poor H V, Verdu S. Channel coding rate in the finite blocklength regime. IEEE Trans Inform Theor, 2010, 56: 2307–2359
Durisi G, Koch T, Popovski P. Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proc IEEE, 2016, 104: 1711–1726
Wolf A, Schulz P, Dörpinghaus M, et al. How reliable and capable is multi-connectivity? IEEE Trans Commun, 2019, 67: 1506–1520
You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35–43
Zheng L Z, Tse D N C. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Trans Inform Theor, 2003, 49: 1073–1096
Nguyen V G, Brunstrom A, Grinnemo K J, et al. SDN/NFV-based mobile packet core network architectures: a survey. IEEE Commun Surv Tut, 2017, 19: 1567–1602
Open Networking Foundation. SDN architecture overview. https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
Huang X L, Cheng S, Cao K, et al. A survey of deployment solutions and optimization strategies for hybrid SDN networks. IEEE Commun Surv Tutor, 2018, 21: 1483–1507
Amin R, Reisslein M, Shah N. Hybrid SDN networks: a survey of existing approaches. IEEE Commun Surv Tut, 2018, 20: 3259–3306
Bouras C, Kollia A, Papazois A. SDN & NFV in 5G: advancements and challenges. In: Proceedings of Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, 2017. 107–111
ETSI NFV ISG. Network functions visualization, white paper, https://portal.etsi.org/nfv/nfv_white_paper.pdf
Gonzalez A J, Nencioni G, Kamisinski A, et al. Dependability of the NFV orchestrator: state of the art and research challenges. IEEE Commun Surv Tut, 2018, 20: 3307–3329
Ed T. SDN vs. NFV: what’s the difference. https://www.cisco.com/c/en/us/solutions/software-defined-networking/sdn-vs-nfv.html
Gil Herrera J, Botero J F. Resource allocation in NFV: a comprehensive survey. IEEE Trans Netw Serv Manage, 2016, 13: 518–532
Saro V. Role of NFV in 5G network. https://www.thetech.in/2019/01/role-of-nfv-in-5g-network.html
Nencioni G, Garroppo R G, Gomzalez A J, et al. Orchestration and control in software-defined 5G networks: research challenges. Wirel Commun Mobile Comput, 2018, 2018: 1–18
Rost P, Mannweiler C, Michalopoulos D S, et al. Network slicing to enable scalability and flexibility in 5G mobile networks. IEEE Commun Mag, 2017, 55: 72–79
Afolabi I, Taleb T, Samdanis K, et al. Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun Surv Tut, 2018, 20: 2429–2453
NGMN Alliance. Description of Network Slicing Concept, NGMN 5G P1 Requirements & Architecture, Work Stream End-to-End Architecture, Version 1.0. 2016
Li X, Samaka M, Chan H A, et al. Network slicing for 5G: challenges and opportunities. IEEE Internet Comput, 2017, 21: 20–27
IETF Network Working Group. Network slicing architecture. https://tools.ietf.org/id/draft-geng-netslices-architecture-01.html
3rd Generation Partnership Project (3GPP). System architecture for the 5G system. TS 23.501. https://www.3gpp.org/ftp/Specs/archive/23_series/23.501
3rd Generation Partnership Project (3GPP). 5G System: Technical realization of service based architecture. TS 29.500. https://www.3gpp.org/ftp/Specs/archive/29_series/29.500
Brown G. Serviced-based architecture for 5G core network. White Paper, Huawei Technology Co. Ltd. 2017. https://www.3g4g.co.uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-Networks_HR_Huawei.pdf
Rudolph H C, Kunz A, Iacono L L, et al. Security challenges of the 3GPP 5G service based architecture. IEEE Commun Standards Mag, 2019, 3: 60–65
Alliance N. Service-based architecture in 5G: case study and deployment recommendations. https://www.ngmn.org/wp-content/uploads/Publications/2019/190919-NGMN_Service-BasedArchitecturein5GCaseStudyandDeploymentRecommendations-v2.4.pdf
Huawei Technology Co. Ltd. Partnering with the industry for 5G security assurance. https://www-file.huawei.com/-/media/corporate/pdf/trust-center/huawei-5g-security-white-paper-4th.pdf
Wang S G, Guo Y, Zhang N, et al. Delay-aware microservice coordination in mobile edge computing: a reinforcement learning approach. IEEE Trans Mobile Comput, 2019. doi: https://doi.org/10.1109/TMC.2019.2957804
Wang S G, Xu J L, Zhang N, et al. A survey on service migration in mobile edge computing. IEEE Access, 2018, 6: 23511–23528
Zhang P, Niu K, Tian H, et al. Technology prospect of 6G mobile communications. J Commun, 2019, 40: 141–148
Letaief K B, Chen W, Shi Y M, et al. The roadmap to 6G: AI empowered wireless networks. IEEE Commun Mag, 2019, 57: 84–90
Lovén L, Leppänen T, Peltonen E, et al. Edge AI: a vision for distributed, edge-native artificial intelligence in future 6G networks. In: Proceedings of the 1st 6G Wireless Summit, Lapland, 2019. 1–2
Qiao X Q, Ren P, Dustdar S, et al. Web AR: a promising future for mobile augmented reality-state of the art, challenges, and insights. Proc IEEE, 2019, 107: 651–666
Donald V H M. Advanced mobile phone service: the cellular concept. Bell Syst Tech J, 1979, 58: 15–41
Young W R. Advanced mobile phone service: Introduction, background, and objectives. Bell Syst Tech J, 1979, 58: 1–14
Lozano A, Heath R W, Andrews J G. Fundamental limits of cooperation. IEEE Trans Inform Theor, 2013, 59: 5213–5226
Han T, Ge X H, Wang L J, et al. 5G converged cell-less communications in smart cities. IEEE Commun Mag, 2017, 55: 44–50
Interdonato G, Björnson E, Ngo H Q, et al. Ubiquitous cell-free massive MIMO communications. EURASIP J Wirel Commun Netw, 2019, 2019: 19
Zhang J Y, Chen S F, Lin Y, et al. Cell-free massive MIMO: a new next-generation paradigm. IEEE Access, 2019, 7: 99878–99888
Buzzi S, D’Andrea C. Cell-free massive MIMO: user-centric approach. IEEE Wirel Commun Lett, 2017, 6: 706–709
Bjornson E, Sanguinetti L. Making cell-free massive MIMO competitive with MMSE processing and centralized implementation. IEEE Trans Wirel Commun, 2020, 19: 77–90
Ngo H Q, Tran L N, Duong T Q, et al. On the total energy efficiency of cell-free massive MIMO. IEEE Trans Green Commun Netw, 2018, 2: 25–39
Mouradian C, Naboulsi D, Yangui S, et al. A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun Surv Tut, 2018, 20: 416–464
ETSI. Mobile-edge computing—Introductory technical white paper. https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
Chiang M, Zhang T. Fog and IoT: an overview of research opportunities. IEEE Internet Things J, 2016, 3: 854–864
OpenFog Consortium. Openfog reference architecture technical paper. https://www.openfogconsortium.org/wp-content/uploads/OpenFogReferenceArchitecture20917-FINAL-1.pdf
Yang Y, Huang J, Zhang T, et al. Fog and Fogonomics: Challenges and Practices of Fog Computing. Hoboken: Wiley, 2020
Yang Y, Luo X, Chu X, et al. Fog-enabled Intelligent IoT Systems. Berlin: Springer, 2019
Chen N X, Yang Y, Zhang T, et al. Fog as a service technology. IEEE Commun Mag, 2018, 56: 95–101
Mukherjee M, Shu L, Wang D. Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun Surv Tut, 2018, 20: 1826–1857
Park J, Samarakoon S, Bennis M, et al. Wireless network intelligence at the edge. Proc IEEE, 2019, 107: 2204–2239
Yang Y. Multi-tier computing networks for intelligent IoT. Nature Electron, 2019, 2: 4–5
Gopal R, BenAmmar N. Framework for unifying 5G and next-generation satellite communications. IEEE Netw, 2018, 32: 16–24
Boero L, Bruschi R, Davoli F, et al. Satellite networking integration in the 5G ecosystem: research trends and open challenges. IEEE Netw, 2018, 32: 9–15
Giambene G, Kota S, Pillai P. Satellite-5G integration: a network perspective. IEEE Netw, 2018, 32: 25–31
Yao H P, Wang L Y, Wang X D, et al. The space-terrestrial integrated network: an overview. IEEE Commun Mag, 2018, 56: 178–185
Naqvi S A R, Hassan S A, Pervaiz H, et al. Drone-aided communication as a key enabler for 5G and resilient public safety networks. IEEE Commun Mag, 2018, 56: 36–42
Cheng N, Xu W C, Shi W S, et al. Air-ground integrated mobile edge networks: architecture, challenges, and opportunities. IEEE Commun Mag, 2018, 56: 26–32
Sekander S, Tabassum H, Hossain E. Multi-tier drone architecture for 5G/B5G cellular networks: challenges, trends, and prospects. IEEE Commun Mag, 2018, 56: 96–103
Xiong G, Zhu F H, Dong X S, et al. A kind of novel ITS based on space-air-ground big-data. IEEE Intell Transp Syst Mag, 2016, 8: 10–22
Zhang N, Zhang S, Yang P, et al. Software defined space-air-ground integrated vehicular networks: challenges and solutions. IEEE Commun Mag, 2017, 55: 101–109
Liu J J, Shi Y P, Fadlullah Z M, et al. Space-air-ground integrated network: a survey. IEEE Commun Surv Tut, 2018, 20: 2714–2741
Zhou Z Y, Feng J H, Zhang C T, et al. SAGECELL: software-defined space-air-ground integrated moving cells. IEEE Commun Mag, 2018, 56: 92–99
Vondra M, Ozger M, Schupke D, et al. Integration of satellite and aerial communications for heterogeneous flying vehicles. IEEE Netw, 2018, 32: 62–69
Ruan Y H, Li Y Z, Wang C X, et al. Performance evaluation for underlay cognitive satellite-terrestrial cooperative networks. Sci China Inf Sci, 2019, 61: 102306
Zhang S H, Zhang H L, Di B Y, et al. Cellular UAV-to-X communications: design and optimization for multi-UAV networks. IEEE Trans Wirel Commun, 2019, 18: 1346–1359
Silva R, Rajasinghege S. Optimal desired trajectories of UAVs in private UAV networks. In: Proceedings of IEEE International Conference on Advanced Technologies for Communications, Ho Chi Minh City, 2018. 310–314
Hua M, Wang Y, Li C G, et al. UAV-aided mobile edge computing systems with one by one access scheme. IEEE Trans Green Commun Netw, 2019, 3: 664–678
Zhou P, Fang X M, Fang Y G, et al. Beam management and self-healing for mmWave UAV mesh networks. IEEE Trans Veh Technol, 2019, 68: 1718–1732
Kim G H, Mahmud I, Cho Y Z. Hello-message transmission-power control for network self-recovery in FANETs. In: Proceedings of IEEE 10th International Conference on Ubiquitous and Future Networks, Prague, 2018. 546–548
Shakhatreh H, Sawalmeh A H, Al-Fuqaha A, et al. Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access, 2019, 7: 48572–48634
Cao X B, Yang P, Alzenad M, et al. Airborne communication networks: a survey. IEEE J Sel Areas Commun, 2018, 36: 1907–1926
Gratsia S, Ernawan M E. LTE uplink cellular capacity analysis in a high altitude platforms (HAPS) communication. In: Proceedings of IEEE 11th International Conference on Telecommunication Systems Services and Applications, Lombok, 2017. 1–5
Hidayat D. Pilot-based estimation for SC-FDMA LTE in high altitude platforms (HAPS) channel. In: Proceedings of IEEE 9th International Conference on Telecommunication Systems Services and Applications, Bandung, 2015. 1–5
Sudheesh P G, Mozaffari M, Magarini M, et al. Sum-rate analysis for high altitude platform (HAP) drones with tethered balloon relay. IEEE Commun Lett, 2017, 22: 1240–1243
Alzenad M, Shakir M Z, Yanikomeroglu H, et al. FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks. IEEE Commun Mag, 2018, 56: 218–224
Lian Z X, Jiang L G, He C, et al. A non-stationary 3-D wideband GBSM for HAP-MIMO communication systems. IEEE Trans Veh Technol, 2019, 68: 1128–1139
Li B, Fei Z S, Zhang Y. UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet Things J, 2018, 6: 2241–2263
Xia T T, Wang M M, Zhang J J, et al. Maritime Internet of Things: challenges and solutions. IEEE Wirel Commun, 2020, 27: 188–196
Xia T T, Wang M M, You X H. Satellite machine-type communication for maritime Internet of Things: an interference perspective. IEEE Access, 2019, 7: 76404–76415
Wang M M. Machine-type communication for maritime Internet of things: a design. IEEE Commun Surv Tutor, 2020. doi: https://doi.org/10.1109/COMST.2020.3015694
Zhang J J, Wang M M, Xia T T, et al. Maritime IoT: an architectural and radio spectrum perspective. IEEE Access, 2020, 8: 93109–93122
Cheng N, Quan W, Shi W S, et al. A comprehensive simulation platform for space-air-ground integrated network. IEEE Wirel Commun, 2020, 27: 178–185
Niu Z S, Shen S, Zhang Q Y, et al. Space-air-ground integrated vehicular network for immersive driving experience. Chin J IoT, 2017, 1: 17–27
Huang T Y, Yang W, Wu J, et al. A survey on green 6G network: architecture and technologies. IEEE Access, 2019, 7: 175758
Cheng X, Lyu F, Quan W, et al. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE J Sel Areas Commun, 2019, 37: 1117–1129
Shen X M, Gao J, Wu W, et al. AI-assisted network-slicing based next-generation wireless networks. IEEE Open J Veh Technol, 2020, 1: 45–66
Chen J Y, Ye Q, Quan W, et al. SDATP: an SDN-based traffic-adaptive and service-oriented transmission protocol. IEEE Trans Cogn Commun Netw, 2020, 6: 756–770
Wood L, Pavlou G, Evans B. Effects on TCP of routing strategies in satellite constellations. IEEE Commun Mag, 2001, 39: 172–181
Gao Z, Guo Q, Na Z. Novel optimized routing algorithm for LEO satellite IP networks. J Syst Eng Electron, 2011, 22: 917–925
Lu Y, Zhao Y, Sun F, et al. Complexity of routing in store-and-forward LEO satellite networks. IEEE Commun Lett, 2016, 20: 89–92
Liu P, Chen H, Wei S, et al. Hybrid-Traffic-Detour based load balancing for onboard routing in LEO satellite networks. China Commun, 2018, 15: 28–41
Liu W, Tao Y, Liu L. Load-balancing routing algorithm based on segment routing for traffic return in LEO satellite networks. IEEE Access, 2019, 7: 112044–112053
Tang F L, Zhang H T, Yang L T. Multipath cooperative routing with efficient acknowledgement for LEO satellite networks. IEEE Trans Mobile Comput, 2019, 18: 179–192
Sun X, Cao S Z. A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks. J Lightwave Technol, 2020, 38: 2106–2113
Wu H C, Tao X F, Zhang N, et al. Cooperative UAV cluster assisted terrestrial cellular networks for ubiquitous coverage. IEEE J Sel Areas Commun, 2018, 36: 2045–2058
Shi W S, Li J L, Cheng N, et al. Multi-drone 3-D trajectory planning and scheduling in drone-assisted radio access networks. IEEE Trans Veh Technol, 2019, 68: 8145–8158
Gupta L, Jain R, Vaszkun G. Survey of important issues in UAV communication networks. IEEE Commun Surv Tut, 2016, 18: 1123–1152
Razzaq S, Xydeas C, Everett M E, et al. Three-dimensional UAV routing with deconfliction. IEEE Access, 2018, 6: 21536–21551
Zhang Q, Jiang M, Feng Z, et al. IoT enabled UAV: network architecture and routing algorithm. IEEE Internet Things J, 2019, 6: 3727–3742
Liu Y, Luo Z, Liu Z, et al. Cooperative routing problem for ground vehicle and unmanned aerial vehicle: the application on intelligence, surveillance, and reconnaissance missions. IEEE Access, 2019, 7: 63504–63518
Thakoor O, Garg J, Nagi R. Multiagent UAV routing: a game theory analysis with tight price of anarchy bounds. IEEE Trans Automat Sci Eng, 2020, 17: 100–116
Baek J, Han S I, Han Y. Energy-efficient UAV routing for wireless sensor networks. IEEE Trans Veh Technol, 2020, 69: 1741–1750
Tan X, Zuo Z, Su S, et al. Performance analysis of routing protocols for UAV communication networks. IEEE Access, 2020, 8: 92212–92224
Neil C T, Shafi M, Smith P J, et al. Impact of microwave and mmWave channel models on 5G systems performance. IEEE Trans Antenn Propagat, 2017, 65: 6505–6520
3rd Generation Partnership Project (3GPP). Spatial channel model for multiple input multiple output (MIMO) simulations. TR 25.996. https://www.3gpp.org/ftp/Specs/archive/25_series/25.996
3rd Generation Partnership Project (3GPP). Study on 3D channel model for LTE. TR 36.873. https://www.3gpp.org/ftp/Specs/archive/36_series/36.873
Liu L F, Oestges C, Poutanen J, et al. The COST 2100 MIMO channel model. IEEE Wirel Commun, 2012, 19: 92–99
Aalto University. 5G Channel Model for bands up to 100 GHz. 2015. http://www.5gworkshops.com/2015/5G_Channel_Model_for_bands_up_to100_GHz(2015-12-6).pdf
3rd Generation Partnership Project (3GPP). Study on Channel Model for Frequencies from 0.5 to 100 GHz (Release 14). TR 38.901. https://www.3gpp.org/ftp/Specs/archive/38_series/38.901
Li L M, Wang D M, Niu X K, et al. mmWave communications for 5G: implementation challenges and advances. Sci China Inf Sci, 2018, 61: 021301
Song H J, Nagatsuma T. Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol, 2011, 1: 256–263
Akyildiz I F, Jornet J M, Han C. Terahertz band: next frontier for wireless communications. Phys Commun, 2014, 12: 16–32
Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al. Short-range ultra-broadband terahertz communications: concepts and perspectives. IEEE Antenn Propag Mag, 2007, 49: 24–39
Chen Z, Ma X Y, Zhang B, et al. A survey on terahertz communications. China Commun, 2019, 16: 1–35
Commission F C. FCC takes steps to open spectrum horizons for new services and technologies. https://docs.fcc.gov/public/attachments/DOC-356588A1.pdf
Lin C, Li G Y. Indoor terahertz communications: how many antenna arrays are needed? IEEE Trans Wirel Commun, 2015, 14: 3097–3107
Shin J Y, Sirer E G, Weatherspoon H, et al. On the feasibility of completely wirelesss datacenters. IEEE/ACM Trans Netw, 2013, 21: 1666–1679
Okano F, Kanazawa M, Mitani K, et al. Ultrahigh-definition television system with 4000 scanning lines. In: Proceedings of NAB Broadcast Enginner Conference, 2004. 437–440
Haas H, Yin L, Chen C, et al. Introduction to indoor networking concepts and challenges in LiFi. J Opt Commun Netw, 2020, 12: A190
Wang Z X, Tsonev D, Videv S, et al. On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting. IEEE J Sel Areas Commun, 2015, 33: 1612–1623
Kou Y, Pavlos P M, Rui B, et al. 245 MHz bandwidth organic light emitting diodes used in a gigabit optical wireless data link. Nat Commun, 2020, 11: 1–7
Bian R, Tavakkolnia I, Haas H. 15.73 Gb/s visible light communication with off-the-shelf LEDs. J Lightwave Technol, 2019, 37: 2418–2424
Kosman J, Almer O, Abbas T A, et al. A 500 Mb/s–46.1 dBm CMOS SPAD receiver for laser diode visible-light communications. In: Proceedings of 2019 IEEE International Solid- State Circuits Conference, San Francisco, 2019. 468–470
Tan Y Z, Wu X P, Haas H. Performance comparison between coherent and DCO-OFDM LiFi systems. In: Proceedings of 2019 IEEE International Conference on Communications, Shanghai, 2019. 1–6
Zhang Z C, Dang J, Wu L, et al. Optical mobile communications: principles, implementation, and performance analysis. IEEE Trans Veh Technol, 2019, 68: 471–482
Panayirci E, Yesilkaya A, Cogalan T, et al. Physical-layer security with optical generalized space shift keying. IEEE Trans Commun, 2020, 68: 3042–3056
Zhu B C, Zhu Z M, Wang Y J, et al. Optimal optical omnidirectional angle-of-arrival estimator with complementary photodiodes. J Lightwave Technol, 2019, 37: 2932–2945
Zhu B C, Cheng J L, Wang Y J, et al. Three-dimensional VLC positioning based on angle difference of arrival with arbitrary tilting angle of receiver. IEEE J Sel Areas Commun, 2018, 36: 8–22
Jovicic A, Li J Y, Richardson T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun Mag, 2013, 51: 26–32
Armstrong J, Sekercioglu Y A, Neild A. Visible light positioning: a roadmap for international standardization. IEEE Commun Mag, 2013, 51: 68–73
Yang S H, Kim H S, Son Y H, et al. Three-dimensional visible light indoor localization using AOA and RSS with multiple optical receivers. J Lightwave Technol, 2014, 32: 2480–2485
Zeng Z H, Soltani M D, Wang Y L, et al. Realistic indoor hybrid WiFi and OFDMA-based LiFi networks. IEEE Trans Commun, 2020, 68: 2978–2991
Guzman B G, Jimenez V P G, Aguayo-Torres M C, et al. Downlink performance of optical OFDM in outdoor visible light communication. IEEE Access, 2018, 6: 76854–76866
Islim M S, Videv S, Safari M, et al. The impact of solar irradiance on visible light communications. J Lightwave Technol, 2018, 36: 2376–2386
Haas H, Videv S, Das S, et al. Solar cell receiver free-space optical for 5G backhaul. In: Proceedings of Optical Fiber Communications Conference and Exhibition, San Diego, 2019. 1–3
Wu X P, Haas H. Handover skipping for LiFi. IEEE Access, 2019, 7: 38369–38378
Arvanitakis G N, Bian R, McKendry D J J, et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays. IEEE Photonics J, 2020, 12: 1–10
Kaymak Y, Rojas-Cessa R, Feng J H, et al. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE Commun Surv Tut, 2018, 20: 1104–1123
Cap G A, Refei H H, Sluss J J. Optical tracking and auto-alignment transceiver system. IEEE Aerosp Electron Syst Mag, 2010, 25: 26–34
MiWEBA Project. Channel modeling and characterization. 2014. https://www.miweba.eu/wp-content/uploads/2014/07/MiWEBA_D5.1_vl.011.pdf
Jaeckel S, Raschkowski L, Borner K, et al. QuaDRiGa: a 3-D multi-cell channel model with time evolution for enabling virtual field trials. IEEE Trans Antenn Propagat, 2014, 62: 3242–3256
Jaeckel S, Raschkowski L, Böorner K, et al. QuaDRiGa-Quasi Deterministic Radio Channel Generator, User Manual and Documentation. Fraunhofer Heinrich Hertz institute, Technical Report v2.0.0. 2017
METIS Project. METIS Channel Models. 2015. https://metis2020.com/wp-content/uploads/deliverables/METIS_Dl.4_v1.0.pdf
mmMAGIC Project. Measurement results and final mmMAGIC channel models. 2017. https://bscw.5g-mmmagic.eu/pub/bscw.cgi/d202656/mmMAGIC_D2-2.pdf
Maltsev A. Channel models for IEEE 802.11ay. 2016. https://mentor.ieee.org/802.11/dcn/15/11-15-1150-09-00ay-channel-models-for-ieee-802-11ay.docx
ITU-R. Preliminary draft new report ITU-R M. [IMT-2020.EVAL]. Niagara Falls, Canada, R15-WP5D-170613-TD-0332. 2017. https://www.itu.int/md/R15-WP5D-170214-TD-0297/en
Wang C X, Bian J, Sun J, et al. A survey of 5G channel measurements and models. IEEE Commun Surv Tut, 2018, 20: 3142–3168
Huang J, Wang C X, Feng R, et al. Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems. IEEE J Sel Areas Commun, 2017, 35: 1591–1605
Huang J, Wang C X, Liu Y, et al. A novel 3D GBSM for mmWave MIMO channels. Sci China Inf Sci, 2018, 61: 102305
Huang J, Wang C X, Chang H, et al. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems. IEEE J Sel Areas Commun, 2020, 38: 2010–2025
Huang J, Liu Y, Wang C X, et al. 5G millimeter wave channel sounders, measurements, and models: recent developments and future challenges. IEEE Commun Mag, 2019, 57: 138–145
Priebe S, Jastrow C, Jacob M, et al. Channel and propagation measurements at 300 GHz. IEEE Trans Antenn Propagat, 2011, 59: 1688–1698
Kim S, Zajić A G. Statistical characterization of 300-GHz propagation on a desktop. IEEE Trans Veh Technol, 2015, 64: 3330–3338
Kim S, Zajić A G. Characterization of 300-GHz wireless channel on a computer motherboard. IEEE Trans Antenn Propagat, 2016, 64: 5411–5423
Al-Kinani A, Wang C X, Zhou L, et al. Optical wireless communication channel measurements and models. IEEE Commun Surv Tutor, 2018, 20: 1939–1962
Al-Saegh A M, Sali A, Mandeep J S, et al. Channel measurements, characterization, and modeling for land mobile satellite terminals in tropical regions at Ku-band. IEEE Trans Veh Technol, 2017, 66: 897–911
Bai L, Wang C X, Goussetis G, et al. Channel modeling for satellite communication channels at Q-band in high latitude. IEEE Access, 2019, 7: 137691
Khuwaja A A, Chen Y F, Zhao N, et al. A survey of channel modeling for UAV communications. IEEE Commun Surv Tut, 2018, 20: 2804–2821
Khawaja W, Guvenc I, Matolak D W, et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Commun Surv Tut, 2019, 21: 2361–2391
Wang J, Zhou H F, Li Y, et al. Wireless channel models for maritime communications. IEEE Access, 2018, 6: 68070–68088
Liu Y, Wang C X, Huang J. Recent developments and future challenges in channel measurements and models for 5G and beyond high-speed train communication systems. IEEE Commun Mag, 2019, 57: 50–56
He R S, Schneider C, Ai B, et al. Propagation channels of 5G millimeter-wave vehicle-to-vehicle communications: recent advances and future challenges. IEEE Veh Technol Mag, 2020, 15: 16–26
Akyildiz I F, Jornet J M. Realizing ultra-massive MIMO (1024x1024) communication in the (0.06–10) terahertz band. Nano Commun Netw, 2016, 8: 46–54
Yao Y, Liang X L, Zhu M H, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves. IEEE Trans Antenn Propag, 2019, 67: 2085–2094
Wang W B, Capitaneanu S L, Marinca D, et al. Comparative analysis of channel models for industrial IoT wireless communication. IEEE Access, 2019, 7: 91627–91640
Wang C X, Huang J, Wang H M, et al. 6G wireless channel measurements and models: trends and challenges. IEEE Veh Technol Mag, 2020. doi: https://doi.org/10.1109/MVT.2020.3018436
Wang C X, Huang J, Wang H M, et al. 6G oriented wireless communication channel characteristics analysis and modeling (in Chinese). Chinese J Int Things, 2020, 4: 19–32
Feng R, Liu Y, Huang J, et al. Wireless channel parameter estimation algorithms: recent advances and future challenges. China Commun, 2018, 15: 211–228
Tang W K, Li X, Dai J Y, et al. Wireless communications with programmable metasurface: transceiver design and experimental results. China Commun, 2019, 16: 46–61
Huang J, Wang C X, Bai L, et al. A big data enabled channel model for 5G wireless communication systems. IEEE Trans Big Data, 2020, 6: 211–222
Wang C X, Renzo M D, Stanczak S, et al. Artificial intelligence enabled wireless networking for 5G and beyond: recent advances and future challenges. IEEE Wirel Commun, 2020, 27: 16–23
Wu S B, Wang C X, Aggoune H M, et al. A general 3-D non-stationary 5G wireless channel model. IEEE Trans Commun, 2018, 66: 3065–3078
Ahmed E, Yaqoob L, Hashem I A T, et al. Recent advances and challenges in mobile big data. IEEE Commun Mag, 2018, 56: 102–108
Zhu J K, Gong C, Zhang S H, et al. Foundation study on wireless big data: concept, mining, learning and practices. China Commun, 2018, 15: 1–15
Wang T Y, Wang S W, Zhou Z H, et al. Machine learning for 5G and beyond: from model-based to data-driven mobile wireless networks. China Commun, 2019, 16: 165–175
Cayamcela M E M, Lim W. Artificial intelligence in 5G technology: a survey. In: Proceedings of Information and Communication Technology Convergence, Jeju, 2018. 860–865
Kibria M G, Nguyen K, Villardi G P, et al. Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access, 2018, 6: 32328–32338
Chiroma H, Abdullahi U A, Abdulhamid S M, et al. Progress on artificial neural networks for big data analytics: a survey. IEEE Access, 2019, 7: 70535–70551
Mao Q, Hu F, Hao Q. Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun Surv Tut, 2018, 20: 2595–2621
Li Y Z, Zhang Y, Luo K, et al. Ultra-dense HetNets meet big data: green frameworks, techniques, and approaches. IEEE Commun Mag, 2018, 56: 56–63
Li R P, Zhao Z F, Zhou X, et al. Intelligent 5G: when cellular networks meet artificial intelligence. IEEE Wirel Commun, 2017, 24: 175–183
Han S F, I C-L, Li G, et al. Big data enabled mobile network design for 5G and beyond. IEEE Commun Mag, 2017, 55: 150–157
I C-L, Sun Q, Liu Z M, et al. The big-data-driven intelligent wirel network: architecture, use cases, solutions, and future trends. IEEE Veh Technol Mag, 2017, 12: 20–29
Qin Z J, Ye H, Li G Y, et al. Deep learning in physical layer communications. IEEE Wirel Commun, 2019, 26: 93–99
You X H, Zhang C, Tan X S, et al. AI for 5G: research directions and paradigms. Sci China Inf Sci, 2019, 62: 021301
Ye H, Li G Y, Juang B H. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel Commun Lett, 2018, 7: 114–117
Xu J, Zhu P C, Li J M, et al. Deep learning-based pilot design for multi-user distributed massive MIMO systems. IEEE Wirel Commun Lett, 2019, 8: 1016–1019
Samuel N, Diskin T, Wiesel A. Deep MIMO detection. In: Proceedings of IEEE International Workshop on Signal Processing Advances in Wireless Communications, Sapporo, 2017. 1–5
Wang Y H, Zhang S Q, Zhang C, et al. A low-complexity belief propagation based decoding scheme for polar codes-decodability detection and early stopping prediction. IEEE Access, 2019, 7: 159808
Kim M, Kim N I, Lee W, et al. Deep learning-aided SCMA. IEEE Commun Lett, 2018, 22: 720–723
He H T, Jin S, Wen C K, et al. Model-driven deep learning for physical layer communications. IEEE Wirel Commun, 2019, 26: 77–83
Gao X X, Jin S, Wen C K, et al. ComNet: combination of deep learning and expert knowledge in OFDM receivers. IEEE Commun Lett, 2018, 22: 2627–2630
He H T, Wen C K, Jin S, et al. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wirel Commun Lett, 2018, 7: 852–855
He H T, Wen C K, Jin S, et al. Model-driven deep learning for MIMO detection. IEEE Trans Signal Process, 2020, 68: 1702–1715
Tan X S, Xu W H, Sun K, et al. Improving massive MIMO message passing detectors with deep neural network. IEEE Trans Veh Technol, 2020, 69: 1267–1280
Xu W H, Wu Z Z, Ueng Y L, et al. Improved polar decoder based on deep learning. In: Proceedings of IEEE International Workshop on Signal Processing Systems, Lorient, 2017. 1–6
Xu W H, Zhang Z C, You X H, et al. Reconfigurable and low-complexity accelerator for convolutional and generative networks over finite fields. IEEE Trans Comput-Aided Des Integr Circ Syst, 2020. doi: https://doi.org/10.1109/TCAD.2020.2973355
Zhang J J, Huang Y M, Wang J H, et al. Intelligent beam training for millimeter-wave communications via deep reinforcement learning. In: Proceedings of IEEE Global Communications Conference, Waikoloa, 2019. 1–7
Zhang J J, Huang Y M, Zhou Y, et al. Beam alignment and tracking for millimeter wave communications via bandit learning. IEEE Trans Commun, 2020. doi: https://doi.org/10.1109/TCOMM.2020.2988256
Zhang C, Ueng Y L, Studer C, et al. Artificial intelligence for 5G and beyond 5G: implementations, algorithms, and optimizations. IEEE J Emerg Sel Top Circ Syst, 2020, 10: 145–148
Zhou Y B, Fadlullah Z M, Mao B M, et al. A deep-learning-based radio resource assignment technique for 5G ultra dense networks. IEEE Netw, 2018, 32: 28–34
Fu Y, Wang S, Wang C X, et al. Artificial intelligence to manage network traffic of 5G wireless networks. IEEE Netw, 2018, 32: 58–64
Riihijarvi J, Mahonen P. Machine learning for performance prediction in mobile cellular networks. IEEE Comput Intell Mag, 2018, 13: 51–60
Adeel A, Larijani H, Javed A, et al. Critical analysis of learning algorithms in random neural network based cognitive engine for LTE systems. In: Proceedings of IEEE Vehicular Technology Conference, Glasgow, 2015. 1–5
Zang Y J, Ni F X, Feng Z Y, et al. Wavelet transform processing for cellular traffic prediction in machine learning networks. In: Proceedings of IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, 2015. 458–462
Lim W Y B, Luong N C, Hoang D T, et al. Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun Surv Tutor, 2020. ArXiv: 1909.11875
Ye H, Liang L, Li G Y, et al. Machine learning for vehicular networks: recent advances and application examples. IEEE Veh Technol Mag, 2018, 13: 94–101
Liang L, Ye H, Yu G D, et al. Deep-learning-based wireless resource allocation with application to vehicular networks. Proc IEEE, 2020, 108: 341–356
Li E, Zhi Z, Xu C. Edge intelligence: on-demand deep learning model co-inference with device-edge synergy. In: Proceedings of ACM SIGCOMM Workshop on Mobile Edge Communications, Budapest, 2018
Ning Z L, Dong P R, Wang X J, et al. Deep reinforcement learning for vehicular edge computing: an intelligent offloading system. ACM Trans Intell Syst Technol, 2019, 10: 1–24
Tan L T, Hu R Q. Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning. IEEE Trans Veh Technol, 2018, 67: 10190–10203
He S W, Huang W, Wang J H, et al. Cache-enabled coordinated mobile edge network: opportunities and challenges. 2019. https://arxiv.org/pdf/1912.11626.pdf
Zhang Z M, Yang Y Q, Hua M, et al. Proactive caching for vehicular multi-view 3D video streaming via deep reinforcement learning. IEEE Trans Wirel Commun, 2019, 18: 2693–2706
Zhang Z M, Chen H Y, Hua M, et al. Double coded caching in ultra dense networks: caching and multicast scheduling via deep reinforcement Learning. IEEE Trans Commun, 2020, 68: 1071–1086
Zhang Z M, Hua M, Li C G, et al. Placement delivery array design via attention-based sequence-to-sequence model with deep neural network. IEEE Wirel Commun Lett, 2019, 8: 372–375
He Y, Zhao N, Yin H X. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach. IEEE Trans Veh Tech, 2017, 67: 44–55
Dang S, Amin O, Shihada B, et al. What should 6G be? Nat Electron, 2020, 3: 20–29
Samarakoon S, Bennis M, Saad W, et al. Distributed federated learning for ultra-reliable low-latency vehicular communications. IEEE Trans Commun, 2020, 68: 1146–1159
Miao W W, Lei W, Wu H Y, et al. Fault processing algorithm of power backbone communication networks based on artificial intelligence and state perception. In: Processing of IEEE Innovative Smart Grid Technologies, Chengdu, 2019. 1045–1050
Yang H L, Alphones A, Xiong Z H, et al. Artificial intelligence-enabled intelligent 6G networks. https://arxiv.org/pdf/1912.05744.pdf
I C-L, Han S F, Bian S. Energy-efficient 5G for a greener future. Nat Electron, 2020, 3: 182–184
Li G Y, Xu Z K, Xiong C, et al. Energy-efficient wireless communications: Tutorial, survey, and open issues. IEEE Wirel Commun, 2011, 18: 28–35
I C-L, Rowel C, Han S F, et al. Toward green & soft: a 5G perspective. IEEE Commun Mag, 2014, 52: 66–73
Kreutz D, Ramos F M V, Verissimo P E, et al. Software-defined networking: a comprehensive survey. Proc IEEE, 2015, 103: 14–76
I C-L, Han S F, Xu Z K, et al. New paradigm of 5G wireless Internet. IEEE J Sel Areas Commun, 2016, 34: 474–482
Bi S Z, Zhang R, Ding Z, et al. Wireless communications in the era of big data. IEEE Commun Mag, 2015, 53: 190–199
Zheng K, Yang Z, Zhang K, et al. Big data-driven optimization for mobile networks toward 5G. IEEE Netw, 2016, 30: 44–51
Chen K C, Huang S L, Zheng L, et al. Communication theoretic data analytics. IEEE J Sel Areas Commun, 2015, 33: 663–675
I C-L, Sun Q, Liu Z M, et al. The big-data-driven intelligent wireless network: architecture, use cases, solutions, and future trends. IEEE Veh Tech Mag, 2017, 12: 20–29
Liu J, Liu F, Ansari N. Monitoring and analyzing big traffic data of a large-scale cellular network with hadoop. IEEE Netw, 2014, 28: 32–39
He Y, Yu F R, Zhao N, et al. Big data analytics in mobile cellular networks. IEEE Access, 2016, 4: 1985–1996
I C-L, Liu Y L, Han S F, et al. On big data analytics for greener and softer RAN. IEEE Access, 2015, 3: 3068–3075
3rd Generation Partnership Project (3GPP). Study of enablers for network automation for 5G. TR 23.791. https://www.3gpp.org/ftp/Specs/archive/23_series/23.791
O’Shea T, Hoydis J. An introduction to deep learning for the physical layer. IEEE Trans Cogn Commun Netw, 2017, 3: 563–575
Dorner S, Cammerer S, Hoydis J, et al. Deep learning based communication over the air. IEEE J Sel Top Signal Process, 2018, 12: 132–143
I C-L, Han S F, Xie T, et al. Artificial intelligence enabled air interface for 6G: solutions, challenges, and standardization impact. IEEE Commun Mag. 2020, in press
Sun L, Du Q H. Physical layer security with its applications in 5G networks: a review. China Commun, 2017, 14: 1–14
Wu Y P, Khisti A, Xiao C S, et al. A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J Sel Areas Commun, 2018, 36: 679–695
Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302
Pan D, Li K R, Ruan D, et al. Quantum-memory-free two-step quantum secure direct communication relying on Einstein-Podolsky-Rosen pairs. IEEE Access, 2020, submitted for publication
Hosseinidehaj N, Babar Z, Malaney R, et al. Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook. IEEE Commun Surv Tut, 2019, 21: 881–919
Ahmad I, Kumar T, Liyanage M, et al. Overview of 5G security challenges and solutions. IEEE Comm Stand Mag, 2018, 2: 36–43
3rd Generation Partnership Project (3GPP). Group services and system aspects; 3GPP system architecture evolution (SAE). TS 33.401. https://www.3gpp.org/ftp/Specs/archive/33_series/33.401
IEEE Standards Association. P1912 — Standard for Privacy and Security Architecture for Consumer Wireless Devices. 2015. https://standards.ieee.org/project/1912.html
CYBER. Attribute based encryption for attribute based access control. 2018. https://www.etsi.org/deliver/etsits/103500103599/103532/01.01.0160/ts103532v010101p.pdf
3rd Generation Partnership Project (3GPP). Security architecture and procedures for 5G system. TS 33.501. https://www.3gpp.org/ftp/Specs/archive/33_series/33.501
Internet development and governance research center, school of economics and management, Tsinghua University. Research report on the current situation of network security in China. 2018. https://anquan.baidu.com/upload/ue/file/20180903/
Ahmad I, Shahabuddin S, Kumar T, et al. Security for 5G and beyond. IEEE Commun Surv Tut, 2019, 21: 3682–3722
Ni J B, Lin X D, Shen X S. Efficient and secure service-oriented authentication supporting network slicing for 5G-enabled IoT. IEEE J Sel Areas Commun, 2018, 36: 644–657
Mahmood N H, Alves H, Lopez O A, et al. Six key enablers for machine type communication in 6G. https://arxiv.org/pdf/1903.05406.pdf
Shannon C E. Communication theory of secrecy systems. Bell Syst Tech J, 1949, 28: 656–715
Wyner A D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355–1387
Tariq F, Khandaker M, Wong K, et al. A speculative study on 6G. https://arxiv.org/pdf/1902.06700.pdf
Niemiec M, Pach A R. Management of security in quantum cryptography. IEEE Commun Mag, 2013, 51: 36–41
Inoue K. Quantum key distribution technologies. IEEE J Sel Top Quantum Electron, 2006, 12: 888–896
Nawaz S J, Sharma S K, Wyne S, et al. Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future. IEEE Access, 2019, 7: 46317–46350
Sharma V, Banerjee S. Analysis of quantum key distribution based satellite communication. In: Proceedings of International Conference Computing, Communication and Networking Technologies, Bangalore, 2018. 1–5
Tarantino S, Cozzolino D, Rottwitt K, et al. Feasibility of quantum communications in aquatic scenario. In: Proceedings of IEEE Photonics Conference, Reston, 2018. 1–2
Yaacoub E, Alouini M S. A key 6G challenge and opportunity-connecting the remaining 4 billions: a survey on rural connectivity. https://arxiv.org/pdf/1906.11541.pdf
Dorri A, Kanhere S S, Jurdak R. Blockchain in Internet of Things: challenges and solutions. https://arxiv.org/pdf/1608.05187.pdf
Zhang Y H, Deng R, Bertino E, et al. Robust and universal seamless handover authentication in 5G HetNets. IEEE Trans Dependable Secure Comput, 2019. doi: https://doi.org/10.1109/TDSC.2019.2927664
Sun Y, Zhang L, Feng G, et al. Blockchain-enabled wireless Internet of Things: performance analysis and optimal communication node deployment. IEEE Internet Things J, 2019, 6: 5791–5802
Fitwi A, Chen Y, Zhu S C. A lightweight blockchain-based privacy protection for smart surveillance at the edge. In: Proceedings of IEEE International Conference on Blockchain, Atlanta, 2019. 552–555
Li Y N, Susilo W, Yang G M, et al. Toward privacy and regulation in blockchain-based cryptocurrencies. IEEE Netw, 2019, 33: 111–117
Wang X F, Li X H, Leung V C M. Artificial intelligence-based techniques for emerging heterogeneous network: state of the arts, opportunities, and challenges. IEEE Access, 2015, 3: 1379–1391
Tang F X, Kawamoto Y, Kato N, et al. Future intelligent and secure vehicular network toward 6G: machine-learning approaches. Proc IEEE, 2020, 108: 292–307
Alhajri R, Zagrouba R, Al-Haidari F. Survey for anomaly detection of IoT botnets using machine learning auto-encoders. Int J Appl Eng Res, 2019, 14: 2417–2421
Shakiba-Herfeh M, Chorti A, Poor H V. Physical layer security: authentication, integrity and confidentiality. https://arxiv.org/pdf/2001.07153.pdf
Liang Y C, Larsson E G, Niyato D, et al. 6G mobile networks: emerging technologies and applications. China Commun, 2020, 17: 4
Acknowledgements
This work was supported by National Key R&D Program of China (Grant No. 2018YFB1801101), National Natural Science Foundation of China (Grant Nos. 61960206006, 61901109), Frontiers Science Center for Mobile Information Communication and Security, High Level Innovation and Entrepreneurial Research Team Program in Jiangsu, High Level Innovation and Entrepreneurial Talent Introduction Program in Jiangsu, National Postdoctoral Program for Innovative Talents (Grant No. BX20180062), Research Fund of National Mobile Communications Research Laboratory, Southeast University (Grant No. 2020B01), and Fundamental Research Funds for the Central Universities (Grant No. 2242020R30001).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
Open access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
You, X., Wang, CX., Huang, J. et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64, 110301 (2021). https://doi.org/10.1007/s11432-020-2955-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-020-2955-6