Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Proximity-induced magnetic order in topological insulator on ferromagnetic semiconductor

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Introducing magnetic order into topological insulator (TI) to break the time-reversal symmetry can yield numerous fascinating physical phenomena, which brings new hope for the emerging spintronic technology. The proximity effect is regarded as a promising strategy that could advance the step for realistic application by choosing a suitable ferromagnetic layer with the merits of high Curie temperature and high compatibility with mainstream semiconductor technology. Here, we prepare a Bi2Se3 thin film on Si-compatible ferromagnetic semiconductor (FMS) of MnxGe1−x by molecular beam epitaxy. After integration, the nonmagnetic Bi2Se3 exhibits an anomalous Hall signal and a clear weak localization cusp in magnetoresistance until 150 K, confirming that a high-temperature magnetism can be induced by the proximity effect. Detailed investigation of the magnetoconductance quantitatively indicates that the Bi2Se3 conductance suffers a transition from weak antilocalization to weak localization behavior after integrating with MnxGe1−x, and an 80 meV bandgap is predicted to be opened in the surface states in Bi2Se3 layer due to the proximity-induced magnetism. Our results prove that the proximity effect could be an important method to achieve topological magnetism at high temperatures, and reveals its potential for the manipulation of the topological surface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hao Y, Xiang S Y, Han G Q, et al. Recent progress of integrated circuits and optoelectronic chips. Sci China Inf Sci, 2021, 64: 201401

    Article  Google Scholar 

  2. Wang L D, Cai W L, Cao K H, et al. Femtosecond laser-assisted switching in perpendicular magnetic tunnel junctions with double-interface free layer. Sci China Inf Sci, 2021, 65: 142403

    Article  Google Scholar 

  3. Cai W L, Wang M X, Cao K H, et al. Stateful implication logic based on perpendicular magnetic tunnel junctions. Sci China Inf Sci, 2022, 65: 122406

    Article  Google Scholar 

  4. Eimer S, Cheng H Y, Li J J, et al. Perpendicular magnetic anisotropy based spintronics devices in Pt/Costacks under different hard and flexible substrates. Sci China Inf Sci, 2023, 66: 122408

    Article  Google Scholar 

  5. Zhang D, Shi M, Zhu T, et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys Rev Lett, 2019, 122: 206401

    Article  Google Scholar 

  6. Zang J, Nagaosa N. Monopole current and unconventional Hall response on a topological insulator. Phys Rev B, 2010, 81: 245125

    Article  Google Scholar 

  7. Chang C Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340: 167–170

    Article  Google Scholar 

  8. Kou X, Guo S T, Fan Y, et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys Rev Lett, 2014, 113: 137201

    Article  Google Scholar 

  9. Kou X, Fan Y, Lang M, et al. Magnetic topological insulators and quantum anomalous hall effect. Solid State Commun, 2015, 215–216: 34–53

    Article  Google Scholar 

  10. Kou X, Lang M, Fan Y, et al. Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano, 2013, 7: 9205–9212

    Article  Google Scholar 

  11. Kou X F, Jiang W J, Lang M R, et al. Magnetically doped semiconducting topological insulators. J Appl Phys, 2012, 112: 063912

    Article  Google Scholar 

  12. Zhang L, Zhao D, Zang Y, et al. Ferromagnetism in vanadium-doped Bi2Se3 topological insulator films. APL Mater, 2017, 5: 076106

    Article  Google Scholar 

  13. Carva K, Bálaž P, Šebesta J, et al. Magnetic properties of Mn-doped Bi2Se3 topological insulators: ab initio calculations. Phys Rev B, 2020, 101: 054428

    Article  Google Scholar 

  14. Sánchez-Barriga J, Varykhalov A, Springholz G, et al. Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi1−xMnx)2Se3. Nat Commun, 2016, 7: 10559

    Article  Google Scholar 

  15. Checkelsky J G, Yoshimi R, Tsukazaki A, et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat Phys, 2014, 10: 731–736

    Article  Google Scholar 

  16. Katmis F, Lauter V, Nogueira F S, et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature, 2016, 533: 513–516

    Article  Google Scholar 

  17. Yao X, Gao B, Han M G, et al. Record high-proximity-induced anomalous hall effect in (BixSb1−x)2Te3 thin film grown on CrGeTe3 substrate. Nano Lett, 2019, 19: 4567–4573

    Article  Google Scholar 

  18. Lang M, Montazeri M, Onbasli M C, et al. Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure. Nano Lett, 2014, 14: 3459–3465

    Article  Google Scholar 

  19. Tang C, Chang C Z, Zhao G, et al. Above 400-K robust perpendicular ferromagnetic phase in a topological insulator. Sci Adv, 2017, 3: e1700307

    Article  Google Scholar 

  20. He Q L, Kou X, Grutter A J, et al. Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures. Nat Mater, 2017, 16: 94–100

    Article  Google Scholar 

  21. He Q L, Yin G, Grutter A J, et al. Exchange-biasing topological charges by antiferromagnetism. Nat Commun, 2018, 9: 2767

    Article  Google Scholar 

  22. Liu W, Zhang H, Shi J, et al. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nat Commun, 2016, 7: 13497

    Article  Google Scholar 

  23. Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields. Nat Nanotech, 2015, 10: 209–220

    Article  Google Scholar 

  24. Park Y D, Hanbicki A T, Erwin S C, et al. A group-IV ferromagnetic semiconductor: MnxGe1−x. Science, 2002, 295: 651–654

    Article  Google Scholar 

  25. Murata K, Kirkham C, Tsubomatsu S, et al. Atomic layer doping of Mn magnetic impurities from surface chains at a Ge/Si hetero-interface. Nanoscale, 2018, 10: 295–301

    Article  Google Scholar 

  26. Kim S, Lee S, Woo J, et al. Growth of Bi2Se3 topological insulator thin film on Ge(1 1 1) substrate. Appl Surf Sci, 2018, 432: 152–155

    Article  Google Scholar 

  27. He L, Xiu F, Wang Y, et al. Epitaxial growth of Bi2Se3 topological insulator thin films on Si (1 1 1). J Appl Phys, 2011, 109: 103702

    Article  Google Scholar 

  28. He L, Xiu F, Yu X, et al. Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett, 2012, 12: 1486–1490

    Article  Google Scholar 

  29. Zhang D, Richardella A, Rench D W, et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys Rev B, 2012, 86: 205127

    Article  Google Scholar 

  30. Liu N, Teng J, Li Y. Two-component anomalous Hall effect in a magnetically doped topological insulator. Nat Commun, 2018, 9: 1282

    Article  Google Scholar 

  31. Liu W, West D, He L, et al. Atomic-scale magnetism of Cr-doped Bi2Se3 thin film topological insulators. ACS Nano, 2015, 9: 10237–10243

    Article  Google Scholar 

  32. Gracia-Abad R, Sangiao S, Bigi C, et al. Omnipresence of weak antilocalization (WAL) in Bi2Se3 thin films: a review on its origin. Nanomaterials, 2021, 11: 1077

    Article  Google Scholar 

  33. Che X, Murata K, Pan L, et al. Proximity-induced magnetic order in a transferred topological insulator thin film on a magnetic insulator. ACS Nano, 2018, 12: 5042–5050

    Article  Google Scholar 

  34. Hikami S, Larkin A I, Nagaoka Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog Theor Phys, 1980, 63: 707–710

    Article  Google Scholar 

  35. He H T, Wang G, Zhang T, et al. Impurity effect on weak antilocalization in the topological insulator Bi2Se3. Phys Rev Lett, 2011, 106: 166805

    Article  Google Scholar 

  36. Lang M, He L, Kou X, et al. Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett, 2013, 13: 48–53

    Article  Google Scholar 

  37. Lu H Z, Shen S Q. Weak localization of bulk channels in topological insulator thin films. Phys Rev B, 2011, 84: 125138

    Article  Google Scholar 

  38. Xu S Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat Phys, 2012, 8: 616–622

    Article  Google Scholar 

  39. Altshuler B L, Aronov A G, Khmelnitsky D E. Effects of electron-electron collisions with small energy transfers on quantum localisation. J Phys C-Solid State Phys, 1982, 15: 7367–7386

    Article  Google Scholar 

  40. Bardarson J H, Moore J E. Quantum interference and Aharonov-Bohm oscillations in topological insulators. Rep Prog Phys, 2013, 76: 056501

    Article  Google Scholar 

  41. Jing Y, Huang S, Zhang K, et al. Weak antilocalization and electron-electron interaction in coupled multiple-channel transport in a Bi2Se3 thin film. Nanoscale, 2016, 8: 1879–1885

    Article  Google Scholar 

  42. Liu M, Chang C Z, Zhang Z, et al. Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two-dimensional limit. Phys Rev B, 2011, 83: 165440

    Article  Google Scholar 

  43. Lu H Z, Shi J, Shen S Q. Competition between weak localization and antilocalization in topological surface states. Phys Rev Lett, 2011, 107: 076801

    Article  Google Scholar 

  44. Chang C Z, Tang P, Wang Y L, et al. Chemical-potential-dependent gap opening at the Dirac surface states of Bi2Se3 induced by aggregated substitutional Cr atoms. Phys Rev Lett, 2014, 112: 056801

    Article  Google Scholar 

  45. Lee I, Kim C K, Lee J, et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1 Sb0.9)2−xTe3. Proc Natl Acad Sci USA, 2015, 112: 1316–1321

    Article  Google Scholar 

  46. Li Q, Trang C X, Wu W, et al. Large magnetic gap in a designer ferromagnet-topological insulator-ferromagnet heterostructure. Adv Mater, 2022, 34: 2107520

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 62274009, 61774013), National Key R&D Program of China (Grant No. 2018YFB0407602), and International Collaboration Project (Grant No. B16001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhang or Tianxiao Nie.

Additional information

Supporting information Appendixes A–D. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Murata, K., Xie, W. et al. Proximity-induced magnetic order in topological insulator on ferromagnetic semiconductor. Sci. China Inf. Sci. 66, 222403 (2023). https://doi.org/10.1007/s11432-023-3841-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3841-9

Keywords