Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Principal components of nuclear mass models

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Principal component analysis (PCA) is employed to extract the principal components (PCs) present in nuclear mass models for the first time. The effects from different nuclear mass models are reintegrated and reorganized in the extracted PCs. These PCs are recombined to build new mass models, which achieve better accuracy than the original theoretical mass models. This comparison indicates that using the PCA approach, the effects contained in different mass models can be collaborated to improve nuclear mass predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).

    Article  ADS  Google Scholar 

  2. M. R. Mumpower, R. Surman, G. C. McLaughlin, and A. Aprahamian, Prog. Particle Nucl. Phys. 86, 86 (2016), arXiv: 1508.07352.

    Article  ADS  Google Scholar 

  3. Z. Li, Z. M. Niu, and B. H. Sun, Sci. China-Phys. Mech. Astron. 62, 982011 (2019).

    Article  ADS  Google Scholar 

  4. X. F. Jiang, X. H. Wu, and P. W. Zhao, Astrophys. J. 915, 29 (2021), arXiv: 2105.10218.

    Article  ADS  Google Scholar 

  5. X. H. Wu, P. W. Zhao, S. Q. Zhang, and J. Meng, Astrophys. J. 941, 152 (2022), arXiv: 2108.06104.

    Article  ADS  Google Scholar 

  6. J. Meng, Z. M. Niu, H. Z. Liang, and B. H. Sun, Sci. China-Phys. Mech. Astron. 54, 119 (2011).

    Article  ADS  Google Scholar 

  7. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2020).

    Article  Google Scholar 

  8. C. F. Weizsäcker, Z. Physik 96, 431 (1935).

    Article  ADS  Google Scholar 

  9. N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014), arXiv: 1405.2616.

    Article  ADS  Google Scholar 

  10. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, Atom. Data Nucl. Data Tables 109-110, 1 (2016).

    Article  ADS  Google Scholar 

  11. H. Koura, T. Tachibana, M. Uno, and M. Yamada, Prog. Theor. Phys. 113, 305 (2005).

    Article  ADS  Google Scholar 

  12. J. M. Pearson, R. C. Nayak, and S. Goriely, Phys. Lett. B 387, 455 (1996).

    Article  ADS  Google Scholar 

  13. L. Geng, H. Toki, and J. Meng, Prog. Theor. Phys. 113, 785 (2005), arXiv: nucl-th/0503086.

    Article  ADS  Google Scholar 

  14. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009), arXiv: 0906.2607.

    Article  ADS  Google Scholar 

  15. S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett. 102, 242501 (2009).

    Article  ADS  Google Scholar 

  16. X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, Atom. Data Nucl. Data Tables 121-122, 1 (2018), arXiv: 1704.08906.

    Article  ADS  Google Scholar 

  17. X. Meng, B. N. Lu, and S. G. Zhou, Sci. China-Phys. Mech. Astron. 63, 212011 (2020), arXiv: 1910.10552.

    Article  ADS  Google Scholar 

  18. J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, Nature 486, 509 (2012).

    Article  ADS  Google Scholar 

  19. A. V. Afanasjev, S. E. Agbemava, D. Ray, and P. Ring, Phys. Lett. B 726, 680 (2013), arXiv: 1309.3289.

    Article  ADS  Google Scholar 

  20. Y. L. Yang, Y. K. Wang, P. W. Zhao, and Z. P. Li, Phys. Rev. C 104, 054312 (2021), arXiv: 2108.13057.

    Article  ADS  Google Scholar 

  21. K. Zhang, M. K. Cheoun, Y. B. Choi, P. S. Chong, J. Dong, Z. Dong, X. Du, L. Geng, E. Ha, X. T. He, C. Heo, M. C. Ho, E. J. In, S. Kim, Y. Kim, C. H. Lee, J. Lee, H. Li, Z. Li, T. Luo, J. Meng, M. H. Mun, Z. Niu, C. Pan, P. Papakonstantinou, X. Shang, C. Shen, G. Shen, W. Sun, X. X. Sun, C. K. Tam, C. K. Thaivayongnou, C. Wang, X. Wang, S. H. Wong, J. Wu, X. Wu, X. Xia, Y. Yan, R. W. Y. Yeung, T. C. Yiu, S. Zhang, W. Zhang, X. Zhang, Q. Zhao, and S. G. Zhou, Atom. Data Nucl. Data Tables 144, 101488 (2022).

    Article  Google Scholar 

  22. C. Pan, M. K. Cheoun, Y. B. Choi, J. Dong, X. Du, X. H. Fan, W. Gao, L. Geng, E. Ha, X. T. He, J. Huang, K. Huang, S. Kim, Y. Kim, C. H. Lee, J. Lee, Z. Li, Z. R. Liu, Y. Ma, J. Meng, M. H. Mun, Z. Niu, P. Papakonstantinou, X. Shang, C. Shen, G. Shen, W. Sun, X. X. Sun, J. Wu, X. Wu, X. Xia, Y. Yan, T. C. Yiu, K. Zhang, S. Zhang, W. Zhang, X. Zhang, Q. Zhao, R. Zheng, and S. G. Zhou, Phys. Rev. C 106, 014316 (2022), arXiv: 2205.01329.

    Article  ADS  Google Scholar 

  23. B. H. Sun, P. W. Zhao, and J. Meng, Sci. China-Phys. Mech. Astron. 54, 210 (2011).

    Article  ADS  Google Scholar 

  24. X. M. Hua, T. H. Heng, Z. M. Niu, B. H. Sun, and J. Y. Guo, Sci. China-Phys. Mech. Astron. 55, 2414 (2012).

    Article  ADS  Google Scholar 

  25. X. Y. Qu, Y. Chen, S. Q. Zhang, P. W. Zhao, I. J. Shin, Y. Lim, Y. Kim, and J. Meng, Sci. China-Phys. Mech. Astron. 56, 2031 (2013), arXiv: 1309.3987.

    Article  ADS  Google Scholar 

  26. J. Barea, A. Frank, J. G. Hirsch, P. V. Isacker, S. Pittel, and V. Velázquez, Phys. Rev. C 77, 041304 (2008).

    Article  ADS  Google Scholar 

  27. M. Bao, Z. He, Y. Y. Cheng, Y. M. Zhao, and A. Arima, Sci. China-Phys. Mech. Astron. 60, 022011 (2017).

    Article  ADS  Google Scholar 

  28. W. E. Ormand, Phys. Rev. C 55, 2407 (1997), arXiv: nucl-th/9701002.

    Article  ADS  Google Scholar 

  29. G. J. Fu, Y. Lei, H. Jiang, Y. M. Zhao, B. Sun, and A. Arima, Phys. Rev. C 84, 034311 (2011).

    Article  ADS  Google Scholar 

  30. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019), arXiv: 1903.10563.

    Article  ADS  Google Scholar 

  31. A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler, C. Fanelli, M. Hjorth-Jensen, T. Horn, M. P. Kuchera, D. Lee, W. Nazarewicz, P. Ostroumov, K. Orginos, A. Poon, X. N. Wang, A. Scheinker, M. S. Smith, and L. G. Pang, Rev. Mod. Phys. 94, 031003 (2022), arXiv: 2112.02309.

    Article  ADS  Google Scholar 

  32. W. He, Q. Li, Y. Ma, Z. Niu, J. Pei, and Y. Zhang, Sci. China-Phys. Mech. Astron. 66, 282001 (2023), arXiv: 2301.06396.

    Article  ADS  Google Scholar 

  33. W. B. He, Y. G. Ma, L. G. Pang, H. C. Song, and K. Zhou, Nucl. Sci. Tech. 34, 88 (2023).

    Article  Google Scholar 

  34. Y. G. Ma, L. G. Pang, R. Wang, and K. Zhou, Chin. Phys. Lett. 40, 122101 (2023), arXiv: 2311.07274.

    Article  ADS  Google Scholar 

  35. Y. Wang, and Q. Li, Front. Phys. 18, 64402 (2023), arXiv: 2305.16686.

    Article  ADS  Google Scholar 

  36. E. Alhassan, D. Rochman, A. Vasiliev, M. Hursin, A. J. Koning, and H. Ferroukhi, Nucl. Sci. Tech. 33, 50 (2022).

    Article  Google Scholar 

  37. K. Zhou, L. Wang, L. G. Pang, and S. Shi, Prog. Particle Nucl. Phys. 135, 104084 (2024).

    Article  Google Scholar 

  38. X. H. Wu, and P. W. Zhao, Phys. Rev. C 101, 051301 (2020).

    Article  ADS  Google Scholar 

  39. X. H. Wu, L. H. Guo, and P. W. Zhao, Phys. Lett. B 819, 136387 (2021), arXiv: 2105.10634.

    Article  Google Scholar 

  40. X. H. Wu, Y. Y. Lu, and P. W. Zhao, Phys. Lett. B 834, 137394 (2022), arXiv: 2208.13966.

    Article  Google Scholar 

  41. L. Guo, X. Wu, and P. Zhao, Symmetry 14, 1078 (2022).

    Article  ADS  Google Scholar 

  42. X. K. Du, P. Guo, X. H. Wu, and S. Q. Zhang, Chin. Phys. C 47, 074108 (2023).

    Article  ADS  Google Scholar 

  43. X. H. Wu, Front. Phys. 11, 1061042 (2023).

    Article  Google Scholar 

  44. N. Wang, and M. Liu, Phys. Rev. C 84, 051303 (2011), arXiv: 1111.0354.

    Article  ADS  Google Scholar 

  45. Z. M. Niu, Z. L. Zhu, Y. F. Niu, B. H. Sun, T. H. Heng, and J. Y. Guo, Phys. Rev. C 88, 024325 (2013), arXiv: 1309.0407.

    Article  ADS  Google Scholar 

  46. N. N. Ma, H. F. Zhang, P. Yin, X. J. Bao, and H. F. Zhang, Phys. Rev. C 96, 024302 (2017).

    Article  ADS  Google Scholar 

  47. Z. Niu, H. Liang, B. Sun, Y. Niu, J. Guo, and J. Meng, Sci. Bull. 63, 759 (2018), arXiv: 1807.05535.

    Article  Google Scholar 

  48. R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93, 014311 (2016), arXiv: 1508.06263.

    Article  ADS  Google Scholar 

  49. Z. M. Niu, and H. Z. Liang, Phys. Lett. B 778, 48 (2018), arXiv: 1801.04411.

    Article  ADS  Google Scholar 

  50. L. Neufcourt, Y. Cao, W. Nazarewicz, and F. Viens, Phys. Rev. C 98, 034318 (2018), arXiv: 1806.00552.

    Article  ADS  Google Scholar 

  51. Z. M. Niu, and H. Z. Liang, Phys. Rev. C 106, L021303 (2022), arXiv: 2208.04783.

    Article  ADS  Google Scholar 

  52. X. C. Ming, H. F. Zhang, R. R. Xu, X. D. Sun, Y. Tian, and Z. G. Ge, Nucl. Sci. Tech. 33, 48 (2022).

    Article  Google Scholar 

  53. L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, and F. Viens, Phys. Rev. Lett. 122, 062502 (2019), arXiv: 1901.07632.

    Article  ADS  Google Scholar 

  54. M. Shelley, and A. Pastore, Universe 7, 131 (2021), arXiv: 2102.07497.

    Article  ADS  Google Scholar 

  55. H. F. Zhang, L. H. Wang, J. P. Yin, P. H. Chen, and H. F. Zhang, J. Phys. G-Nucl. Part. Phys. 44, 045110 (2017).

    Article  ADS  Google Scholar 

  56. Z. P. Gao, Y. J. Wang, H. L. Lu, Q. F. Li, C. W. Shen, and L. Liu, Nucl. Sci. Tech. 32, 109 (2021).

    Article  Google Scholar 

  57. Y. Liu, C. Su, J. Liu, P. Danielewicz, C. Xu, and Z. Ren, Phys. Rev. C 104, 014315 (2021).

    Article  ADS  Google Scholar 

  58. A. Idini, Phys. Rev. Res. 2, 043363 (2020), arXiv: 1904.00057.

    Article  Google Scholar 

  59. S. Wold, K. Esbensen, and P. Geladi, Chemometr. Intell. Lab. Syst. 2, 37 (1987).

    Article  Google Scholar 

  60. I. T. Jolliffe, Principal Component Analysis for Special Types of Data (Springer, New York, 2002).

    Google Scholar 

  61. C. Augier, A. S. Barabash, F. Bellini, G. Benato, M. Beretta, L. Bergé, J. Billard, Y. A. Borovlev, L. Cardani, N. Casali, A. Cazes, E. Celi, M. Chapellier, D. Chiesa, I. Dafinei, F. A. Danevich, M. De Jesus, T. Dixon, L. Dumoulin, K. Eitel, F. Ferri, B. K. Fujikawa, J. Gascon, L. Gironi, A. Giuliani, V. D. Grigorieva, M. Gros, D. L. Helis, H. Z. Huang, R. Huang, L. Imbert, J. Johnston, A. Juillard, H. Khalife, M. Kleifges, V. V. Kobychev, Y. G. Kolomensky, S. I. Konovalov, J. Kotila, P. Loaiza, L. Ma, E. P. Makarov, P. de Marcillac, R. Mariam, L. Marini, S. Marnieros, X. F. Navick, C. Nones, E. B. Norman, E. Olivieri, J. L. Ouellet, L. Pagnanini, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, S. Pirro, D. V. Poda, O. G. Polischuk, S. Pozzi, E. Previtali, T. Redon, A. Rojas, S. Rozov, V. Sanglard, J. A. Scarpaci, B. Schmidt, Y. Shen, V. N. Shlegel, F. Šimkovic, V. Singh, C. Tomei, V. I. Tretyak, V. I. Umatov, L. Vagneron, M. Velázquez, B. Ware, B. Welliver, L. Winslow, M. Xue, E. Yakushev, M. Zarytskyy, and A. S. Zolotarova, Phys. Rev. Lett. 131, 162501 (2023), arXiv: 2307.14086.

    Article  ADS  Google Scholar 

  62. D. Akimov, P. An, C. Awe, P. S. Barbeau, B. Becker, V. Belov, I. Bernardi, M. A. Blackston, C. Bock, A. Bolozdynya, J. Browning, B. Cabrera-Palmer, D. Chernyak, E. Conley, J. Daughhetee, J. Detwiler, K. Ding, M. R. Durand, Y. Efremenko, S. R. Elliott, L. Fabris, M. Febbraro, A. Gallo Rosso, A. Galindo-Uribarri, M. P. Green, M. R. Heath, S. Hedges, D. Hoang, M. Hughes, T. Johnson, A. Khromov, A. Konovalov, E. Kozlova, A. Kumpan, L. Li, J. M. Link, J. Liu, K. Mann, D. M. Markoff, J. Mastroberti, P. E. Mueller, J. Newby, D. S. Parno, S. I. Penttila, D. Pershey, R. Rapp, H. Ray, J. Raybern, O. Razuvaeva, D. Reyna, G. C. Rich, J. Ross, D. Rudik, J. Runge, D. J. Salvat, A. M. Salyapongse, K. Scholberg, A. Shakirov, G. Simakov, G. Sinev, W. M. Snow, V. Sosnovstsev, B. Suh, R. Tayloe, K. Tellez-Giron-Flores, I. Tolstukhin, E. Ujah, J. Vanderwerp, R. L. Varner, C. J. Virtue, G. Visser, T. Wongjirad, Y. R. Yen, J. Yoo, C. H. Yu, and J. Zettlemoyer, Phys. Rev. Lett. 129, 081801 (2022), arXiv: 2110.07730.

    Article  ADS  Google Scholar 

  63. R. S. Bhalerao, J. Y. Ollitrault, S. Pal, and D. Teaney, Phys. Rev. Lett. 114, 152301 (2015), arXiv: 1410.7739.

    Article  ADS  Google Scholar 

  64. E. Bonilla, P. Giuliani, K. Godbey, and D. Lee, Phys. Rev. C 106, 054322 (2022), arXiv: 2203.05284.

    Article  ADS  Google Scholar 

  65. X. H. Wu, Z. X. Ren, and P. W. Zhao, Phys. Rev. C 105, L031303 (2022), arXiv: 2105.07696.

    Article  ADS  Google Scholar 

  66. A. Bulgac, M. M. N. Forbes, S. Jin, R. N. Perez, and N. Schunck, Phys. Rev. C 97, 044313 (2018), arXiv: 1708.08771.

    Article  ADS  Google Scholar 

  67. J. M. R. Fox, C. W. Johnson, and R. N. Perez, Phys. Rev. C 101, 054308 (2020), arXiv: 1911.05208.

    Article  ADS  Google Scholar 

  68. V. Kejzlar, L. Neufcourt, W. Nazarewicz, and P. G. Reinhard, J. Phys. G-Nucl. Part. Phys. 47, 094001 (2020), arXiv: 2002.04151.

    Article  ADS  Google Scholar 

  69. N. Schunck, J. O’Neal, M. Grosskopf, E. Lawrence, and S. M. Wild, J. Phys. G-Nucl. Part. Phys. 47, 074001 (2020), arXiv: 2003.12207.

    Article  ADS  Google Scholar 

  70. X. Y. Zhang, W. F. Li, J. Y. Fang, and Z. M. Niu, Nucl. Phys. A 1043, 122820 (2024).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Hui Wu or Pengwei Zhao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the State Key Laboratory of Nuclear Physics and Technology, Peking University (Grant No. NPT2023KFY02), the China Postdoctoral Science Foundation (Grant No. 2021M700256), the National Key R&D Program of China (Grant No. 2018YFA0404400), the National Natural Science Foundation of China (Grant Nos. 11935003, 11975031, 12141501, and 12070131001), and the High-performance Computing Platform of Peking University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XH., Zhao, P. Principal components of nuclear mass models. Sci. China Phys. Mech. Astron. 67, 272011 (2024). https://doi.org/10.1007/s11433-023-2342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2342-4