Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Water retention and compression behavior of MX80 bentonite pellet

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Bentonite pellet/powder mixture has been considered as a possible sealing material in deep geological disposal of radioactive waste. As the hydro-mechanical behavior of such mixture is intimately related to that of single pellet, in this study, water retention tests and compression tests were performed on single MX-80 bentonite pellet to investigate its hydro-mechanical behavior. Mercury intrusion porosimetry (MIP) tests were also conducted to investigate the microstructure change with suction. The water retention test results show that the changes in water content and void ratio are significant in low suctions (< 59 MPa) with decreasing suction, as opposed to the case in high suction range (> 59 MPa). These significant changes are accompanied by the propagation of cracks. Results from compression tests show that the contact force of pellet rapidly increases in the beginning, reaches a peak and then decreases. Meanwhile, the contact stiffness and the breaking force of pellets show different variation tendencies in different suction ranges. Results from MIP tests indicate that the volume change of pellet upon wetting is attributed to the swelling of bentonite grain, the expansion of inter-grain pores and the generation of large cracks. At the meantime, the changes of pores at micro-scale and macro-scale, especially the wetting-induced cracks, notably affect the compression properties of pellet. These findings provide useful information for better understanding the overall behavior of bentonite pellet/powder mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alonso EE, Romero E, Hoffmann C, García-Escudero E (2005) Expansive bentonite–sand mixtures in cyclic controlled-suction drying and wetting. Eng Geol 81(3):213–226. https://doi.org/10.1016/j.enggeo.2005.06.009

    Article  Google Scholar 

  2. Alonso EE, Romero E, Hoffmann C (2011) Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study. Géotechnique 61(4):329–344. https://doi.org/10.1680/geot.2011.61.4.329

    Article  Google Scholar 

  3. Bernachy-Barbe F, Conil N, Guillot W, Talandier J (2020) Observed heterogeneities after hydration of MX80 bentonite under pellet/powder form. Appl Clay Sci 189:105542. https://doi.org/10.1016/460j.clay.2020.105542

    Article  Google Scholar 

  4. Chen L, Liu YM, Wang J, Cao SF, Xie JL, Ma LK (2014) Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the china-mock-up test. Eng Geol 172:57–68. https://doi.org/10.1016/j.enggeo.2014.01.008

    Article  Google Scholar 

  5. Conil N, Talandier J, Noiret A, Armand G, Bosgiraud JM (2015) Report on Bentonite Saturation Test (REM) (DOPAS WP4 Deliverable No. D4.2)

  6. Cui YJ, Tang AM, Qian LX, Ye WM, Chen B (2011) Thermal-mechanical behavior of compacted GMZ bentonite. Soils Found 51(6):1065–1074. https://doi.org/10.3208/sandf.51.1065

    Article  Google Scholar 

  7. Darde B, Tang AM, Pereira JM, Roux JN, Dangla P, Talandier J (2018) Hydro-mechanical behaviour of high-density bentonite pellet on partial hydration. Géotech Lett 8(4):330–335. https://doi.org/10.1680/jgele.18.00114

    Article  Google Scholar 

  8. Darde B (2019) Experimental and numerical study of the hydromechanical behaviour of bentonite pellet-powder mixtures. Université Paris-Est, Paris

    Google Scholar 

  9. Darde B, Roux JN, Pereira JM, Dangla P, Tang AM (2020) Investigating the hydromechanical behaviour of bentonite pellets by swelling pressure tests and discrete element modelling. Acta Geotech 16:507–524. https://doi.org/10.1007/s11440-020-01040-5

    Article  Google Scholar 

  10. Darde B, Dangla P, Roux JN, Pereira JM, Talandier J, Vu MN, Tang AM (2020) Modelling the behaviour of bentonite pellet-powder mixtures upon hydration from dry granular state to saturated homogeneous state. Eng Geol 278:105847. https://doi.org/10.1016/j.enggeo.2020.105847

    Article  Google Scholar 

  11. Delage P, Marcial D, Cui YJ, Ruiz X (2006) Ageing effect in a compacted bentonite: a microstructure approach. Géotechnique 56(5):291–304. https://doi.org/10.1680/geot.2006.56.5.291

    Article  Google Scholar 

  12. Dixon D, Sanden T, Jonsson E, Hansen J (2011) Backfilling of deposition tunnels: use of bentonite pellets. SKB P-11-44, Stockholm, p 52

  13. Hoffmann C, Alonso EE, Romero E (2007) Hydro-mechanical behaviour of bentonite pellet mixtures. Phys Chem Earth Parts ABC 32(8):832–849. https://doi.org/10.1016/j.pce.2006.04.037

    Article  Google Scholar 

  14. Imbert C, Villar MV (2006) Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration. Appl Clay Sci 32(3–4):197–209. https://doi.org/10.1016/j.clay.2006.01.005

    Article  Google Scholar 

  15. IRSN (2014) Projet de stockage Cigeo. Ouvrages de fermeture. Rapport IRSN n°2014-00006

  16. Liu ZR, Cui YJ, Ye WM, Zhang Z, Wang Q, Chen B (2020) Investigation on vibration induced segregation behaviour of crushed GMZ bentonite pellet mixtures. Constr Build Mater 241:117949. https://doi.org/10.1016/j.conbuildmat.2019.117949

    Article  Google Scholar 

  17. Liu ZR, Cui YJ, Ye WM, Chen B, Wang Q, Chen YG (2020) Investigation of the hydro-mechanical behaviour of GMZ bentonite pellet mixtures. Acta Geotech 15:2865–2875. https://doi.org/10.1007/s11440-020-00976-y

    Article  Google Scholar 

  18. Lloret A, Villar MV, Sanchez M, Gens A, Pintado X, Alonso EE (2003) Mechanical behaviour of heavily compacted bentonite under high suction changes. Geotechnique 53(1):27–40. https://doi.org/10.1680/geot.53.1.27.37258

    Article  Google Scholar 

  19. Mašín D, Khalili N (2016) Swelling phenomena and effective stress in compacted expansive clays. Can Geotech J 53(1):134–147. https://doi.org/10.1139/cgj-2014-0479

    Article  Google Scholar 

  20. Massat L, Cuisinier O, Bihannic I, Claret F, Pelletier M, Masrouri F (2016) Swelling pressure development and inter-aggregate porosity evolution upon hydration of a compacted swelling clay. Appl Clay Sci 124:197–210. https://doi.org/10.1016/j.clay.2016.01.002

    Article  Google Scholar 

  21. Molinero-Guerra A, Mokni N, Delage P, Cui YJ, Tang AM, Aimedieu P (2017) In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite. Appl Clay Sci 135:538–545. https://doi.org/10.1016/j.clay.2016.10.030

    Article  Google Scholar 

  22. Molinero-Guerra A, Cui YJ, He Y, Delage P, Bernier F (2018) Characterization of water retention, compressibility and swelling properties of a pellet/powder bentonite mixture. Eng Geol 248:14–21. https://doi.org/10.1016/j.enggeo.2018.11.005

    Article  Google Scholar 

  23. Molinero-Guerra A, Mokni N, Cui YJ, Delage P, Tang AM, Aimedieu P (2019) Impact of initial structural heterogeneity on long-term swelling behavior of MX80 bentonite pellet/powder mixtures. Can Geotech J 57(9):1404–1416. https://doi.org/10.1139/cgj-2018-0301

    Article  Google Scholar 

  24. Molinero-Guerra A, Delage P, Cui YJ, Mokni N, Tang AM, Aimedieu P (2020) Water-retention properties and microstructure changes of a bentonite pellet upon wetting/drying; application to radioactive waste disposal. Géotechnique 70(3):199–209. https://doi.org/10.1680/jgeot.17.P.291

    Article  Google Scholar 

  25. Monroy R, Zdravkovic L, Ridley A (2010) Evolution of microstructure in compacted London Clay during wetting and loading. Geotechnique 60(2):105–119. https://doi.org/10.1680/geot.8.P.125

    Article  Google Scholar 

  26. Navarro V, Asensio L, Morena GDL, Gharbieh H, Pulkkanen VM (2020) From double to triple porosity modelling of bentonite pellet mixtures. Eng Geol 274:105714. https://doi.org/10.1016/j.enggeo.2020.105714

    Article  Google Scholar 

  27. Paul J, Romeis S, Tomas J, Peukert W (2014) A review of models for single particle compression and their application to silica microspheres. Adv Powder Technol 25(1):136–153. https://doi.org/10.1016/j.apt.2013.09.009

    Article  Google Scholar 

  28. Pusch R (1992) Use of bentonite for isolation of radioactive waste products. Clay Miner 27:353–361. https://doi.org/10.1180/claymin.1992.027.3.08

    Article  Google Scholar 

  29. Saiyouri N, Tessier D, Hicher PY (2004) Experimental study of swelling in unsaturated compacted clays. Clay Miner 39(4):1–11. https://doi.org/10.1180/0009855043940148

    Article  Google Scholar 

  30. Ye WM, Cui YJ, Qian LX, Chen B (2009) An experimental study of the water transfer through confined compacted GMZ bentonite. Eng Geol 108(s3–4):169–176. https://doi.org/10.1016/j.enggeo.2009.08.003

    Article  Google Scholar 

  31. Ye WM, Chen YG, Chen B, Wang Q, Wang J (2010) Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng Geol 116(1–2):12–20. https://doi.org/10.1016/j.enggeo.2010.06.002

    Article  Google Scholar 

  32. Zhang Z, Ye WM, Liu ZR, Chen B, Cui YJ (2018) Influences of PSD curve and vibration on the packing dry density of crushed bentonite pellet mixtures. Constr Build Mater 185:246–255. https://doi.org/10.1016/j.conbuildmat.2018.07.096

    Article  Google Scholar 

  33. Zhang Z, Ye WM, Liu ZR, Wang Q, Cui YJ (2020) Mechanical behavior of GMZ bentonite pellet mixtures over a wide suction range. Eng Geol 264:105383. https://doi.org/10.1016/j.enggeo.2019.105383

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the China Scholarship Council (CSC). The supports provided by Ecole des Ponts ParisTech (ENPC) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) are also greatly acknowledged. The authors also thank the Science and Technology Innovation Program of Hunan Province (Project 2021RC2004), the Research Fund Program of the Key Laboratory of Geotechnical and Underground Engineering (Tongji University), Ministry of Education (Project KLE-TJGE-B2102) and the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education (Project 2021YSJS17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Cui, YJ., Yang, J. et al. Water retention and compression behavior of MX80 bentonite pellet. Acta Geotech. 17, 2435–2447 (2022). https://doi.org/10.1007/s11440-021-01428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01428-x

Keywords